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Abstract: This paper is concerned with the design of robust output feedback controllers
for a class of linear discrete-time systems with norm-bounded parameter uncertainty. The
controller is designed to place the closed-loop poles of the uncertain system in a specified
disk and guarantee an upper bound on a quadratic cost function. An existence condition for
such controllers is derived. It is shown that the condition is equivalent to the feasibility of a
linear matrix inequality (LMI) problem, and the procedure of constructing such a desired
controller is presented in terms of the feasible solutions to this LMI. Furthermore, a convex
optimization problem is introduced for the selection of a suitable output feedback
controller minimizing the upper bound. Copyright©2002 IFAC
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1. INTRODUCTION

Among the numerous methods for solving the robust
control design problem for uncertain systems,
Lyapunov methods (quadratic stability in particular)
have proven to be efficient (Barmish, 1985; Garcia,
et al., 1994; Petersen, 1987). Although stability is a
minimal requirement for control systems, it is not
sufficient in most practical situations. A good
controller should also deliver sufficiently fast and
well-damped time responses. A customary way to
guarantee satisfactory transients is to place the
closed-loop poles in a suitable region of the complex
plane (Chilali, et al., 1999; Gutman and Jury, 1981;
Haddad and Bernstein, 1992), of particular interest is
the circular region D (a, ) with centre at (—a, 0)

and radius r. By placing the closed-loop poles
within a suitable disk, not only can one guarantee an
upper bound on the damping ratio, but also a bound
on the natural frequency and damped natural
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frequency (Haddad and Bernstein, 1992) . In Garcia
and Bernussou (1995), the problem of robust pole
placement within a disk using state feedback has
been solved wusing the concept of quadratic-d
stabilizability, which is the extension of quadratic
stabilizability.

From a practical viewpoint, enforcing the closed-
loop poles in a suitable region is rarely sufficient
because most design problems are essentially multi-
objective (Chilali and Gahinet, 1996; Scherer, ef al.,
1997). Recently, the quadratic-d guaranteed cost
control problem has been addressed for continuous
time uncertain systems (Moheimani and Petersen,
1996) and discrete time uncertain ones (Garcia, 1997)
by combining pole placement with a guaranteed cost
control (Petersen and McFarlane, 1994; Petersen, et
al., 1998; Yu and Chu, 1999). This problem is to
design a controller to place the closed-loop poles in a
specified disk and guarantee an upper bound on a
quadratic cost function. Riccati equation approaches
are developed in (Garcia, 1997; Moheimani and
Petersen, 1996) to design a state feedback quadratic-
d guaranteed cost controllers. These results are based
on the assumption that all states are available for
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feedback. In practice, this is rare. The problem of
quadratic-d guaranteed cost control via output
feedback is therefore interesting. To the best of our
knowledge, this problem has not yet been
investigated in the literature.

This paper is to investigate the design problem of
output feedback quadratic-d guaranteed cost
controllers for a class of discrete-time systems with
norm-bounded parameter uncertainty. Using the LMI
approach, necessary and sufficient conditions for the
existence of quadratic-d guaranteed cost controllers
are derived, and it is proved that this existence
condition is equivalent to the feasibility of a certain
matrix inequality which is jointly convex in all
variables, and a set of desired output feedback
controllers is characterized using the feasible
solutions to this LMI. A convex optimization
problem is introduced to select a suitable controller
to minimize the upper bound of the closed-loop cost
function.

It should be noted that the recent results on the multi-
objective design (Chilali, et al., 1999; Scherer, et al.,
1997) provide an alternative approach to the control
problem considered in this paper. These results are
based on the basic requirement that a single closed-
loop Lyapunov function should account for all design
specifications. The derived conditions, therefore, are
sufficient and the results are conservative. In contrast,
the results of this paper provide the necessary and
sufficient conditions for the existence of quadratic-d
guaranteed cost controllers and require only the
solution of one LMI.

Notation: Throughout the paper the symbol [
denotes the identity matrix of appropriate dimension.
M' denotes the transpose of M . For symmetric
matrices 4 and B, A <(<)B means that the matrix

A-B 1is negative definite (semidefinite). D(a, r)
denotes the disk with the centre —a+ j0 and the
radius .

2. ROBUST PERFORMANCE ANALYSIS
Consider discrete-time systems described by
x(k +1) = (4 + HAE)x(k), ©)

where xOR" is the state, AOR™ is a matrix of
uncertain parameters satisfying the bound A'A<T,
A, H and FE are constant real matrices of

appropriate dimensions, and the initial condition is
specified as x(0) = x, .

Associated with this system is the cost function

J=Y X 00Kk, @
where 0 =0Q'>0.

For a given disk D(a,r), the notion of

quadratic-d stability for the system (1) was

introduced in Garcia and Bernussou (1995). If a
system is quadratic-d stable, its poles belong to the
disk D(a, r). This notion was extended for the
system (1) with a quadratic performance index (2) in
Garcia (1997) and Moheimani and Petersen (1996).

Definition 1: A symmetric matrix P >0 is said to
be a quadratic-d cost matrix for the system (1) and
the cost function (2) if

O -p! + + O
P (A+HAE a[)/rD<O 3
%A+HAE+aI)’/r -P+Q 0

forall A:AN'A<T.

Lemma 1: (Garcia, 1997)
Suppose P >0 is a quadratic-d cost matrix for the
uncertain system (1) and the cost function (2). Then
the system is quadratically-d stable and the cost
function satisfies the bound

Jngi;xo. 4)
r

Conversely, if the system (1) is quadratically-d stable
there will exist a quadratic-d cost matrix for this
system and cost function.

Note that the bound in (4) depends on the initial state
X,. To remove this dependence on the initial state,
there are two approaches: one is the deterministic
method (Petersen, et al., 1998) and the other is the
stochastic approach (Petersen and McFarlane, 1994).
In this paper, we adopt the deterministic approach.
Suppose that the initial state of the system (1) is
arbitrary but belongs to the set S={x,OR":
x, =Uv,v'v<1}, where U is a given matrix. The
cost bound (4) then leads to

I ,
J S A (UPU), )

where A

max

(O] denotes the maximum eigenvalue.

The objective of this section is to derive verification
existence conditions of quadratic-d cost matrices for
the system (1) and cost function (2). To this end, we
first introduce a useful lemma.

Lemma 2: (Xie, 1996)
Given matrices G, H and FE

dimensions and with G symmetrical, then

of appropriate

G+HANE+E'NH' <0

holds for any admissible uncertain matrix A
satisfying A'A <1, if and only if there exists a scalar
£ >0 such that

G+eHH' +¢'E'E<0.

The following theorem is the main result of this
section. It shows that the feasibility of an LMI



problem is necessary and sufficient for the existence
of a quadratic-d cost matrix.

Theorem 1: For a given disk D(a, r), there exists a
quadratic-d cost matrix for the system (1) and cost
function (2) if and only if there exist a scalar € >0
and a symmetric positive definite matrix V° such that

o -v (A+al)y 0 H 0 O
Ha+rary -V VE 0 Q")
O o EV -1 0 0 UO<o-(0)
o, 0
o H 0 0o -7 0 0
H o 0" 0 0 -e H

Proof: It follows from Definition 1 that the system
(1) admits a quadratic-d cost matrix P if and only if
inequality (3) holds for all admissible parameter
uncertainties. It is straightforward to verify that the
inequality (3) is equivalent to

o -p°
%A +al + HAE)'

A+al + HAED
-r’P+r°0 O

This inequality can be rewritten as

g-pt!
gA +al)'

A+al
-r*P+r°00

%)[A[O E]+[0 E] AEpD<0

(7

By Lemma 2, the inequality (7) holds for any
uncertain matrix A satisfying A'A <7 if and only if
there exists a scalar € >0 such that

g-p’! A+al O H
H' 0]+ 0 H<0,
%A+C¥I)' -r*P+r QB‘F g ] g%@ E]
that is,
E—P‘l +e'HH' A+al B<
0 (4+al) -r’P+r’Q+¢€E'E

Pre- and post-multiplying this inequality by the
matrix diag {\/EI s \/EP_I} yield

BeP'1+HH' g(A+al)P” S <o
EP ' (A+al) —r*eP™ +r7eP7 QP +€* P E'EP™

Now let ¥ =¢&P™" . Then using the Schur complement,
it is straightforward to verify that this inequality is
equivalent to (6). This completes the proof of the
theorem.

(6) is an LMI in the variables V' and €. Therefore,
the existence problem of the quadratic cost matrix
can be considered as an LMI feasibility problem, the
latter is convex and can be efficiently solved by the
existing LMI software (Gahinet, ef al., 1995).

Remark 1: It follows from the proof of Theorem 1
that if the condition (6) is satisfied with a scalar
£>0 and a positive definite matrix 7 then the

corresponding upper bound on the cost function (2)
is given by

J<EA wryy.
r

max

3. DESIGN OF QUADRATIC-D GUARANTEED
COST CONTROLLERS

Consider the following uncertain discrete-time
systems

x(k+1)=(A+H AE))x(k) +(B + H AE, )u(k),

Y06 = (C+ HoBE, (k) + (D + HLAE k),

where x(k)JR", u(k)OR" and y(k)OR” are the
state, control input and measurement output of the
system, respectively, 4,B,C,D, E,, E,, H, and
H, are real constant matrices with appropriate
dimensions, AOR™ is an unknown matrix
satisfying A'’A<T, the initial state x(0)=x, is
assumed to be arbitrary but belongs to the set S, in
which S is described in Section 2.

Associated with this system is the cost function
J = [¥'(k)Qx(k) +u'(k)Ru(k)] , )
k=0

where and R>0

0>0

matrices.

are given weighting

In this section, for a given disk D(a, r), we deal

with the output feedback quadratic-d guaranteed cost
control problem for the system (8) and cost function
(9). To this end, let a full order output feedback
controller be of the form

X(k+1) = A.x(k) + B, y(k),
u(k) = C x(k),

£(0) =0, (10

where x(k)OR" is the state of the controller, and
A,,B. and C,
dimensions to be determined later. Applying this

controller to the system (8) results in the closed-loop
system

are matrices with appropriate

x(k) = (4 + HAE)X(k), (11)
where
nO — 04 BC,
x(t)_Dc()D 7-U c g
F0f © TB.C 4,+8.0CH
_ 0OH, D
=[El E2Cc]'

=g

The corresponding closed-loop cost function is

= S F(OOF(h), (12)



where O = diag{Q, C:,RCC} .

Definition 2: Consider the uncertain system (8) with
the cost function (9) and a given disk D(a,r), a

controller of the form (10) is said to be an output
feedback quadratic-d guaranteed cost controller with
cost matrix P >0 if the matrix P >0 is a quadratic-
d cost matrix for the closed-loop system (11) and
cost function (12).

Remark 2: Using the analysis results of the last
section, it follows that if (10) is an output feedback
quadratic-d guaranteed cost controller, then the
resulting closed-loop system will be quadratically
stable and the closed-loop poles are all in the disk
D(a,r), and furthermore, the closed-loop cost

function is no more than a specified bound for all
admissible uncertainties.

By applying Theorem 1 to the closed-loop system
(11) and the corresponding cost function (12), an
existence condition of the guaranteed cost controllers
can be easily derived.

Theorem 2: For a given disk D(a, r), there exists
an output feedback quadratic-d guaranteed cost
controller of the form (10) for the uncertain system
(8) and cost function (9) if and only if there exist a
positive scalar £ and a positive definite matrix ¥
such that

o -7 (A+al)V H 0 0 O
57(2 +al) -rV 0 VE' rVQE
0 0 -1 0 o O<o-(13)
0 _ 0
o o EV 0o -7 00O
H o OV 0 0 -&f

where 0 =0'0, 0= diag{QI/z, RI/ZCC} .
In the matrix inequality (13), the matrix 7 , the
scalar €, and the controller parameters A,, B, and

C. which enter the matrices Z, H s E and Q are

unknown and occur in nonlinear fashion. Therefore,
(13) cannot be considered as an LMI problem. In the
sequel, we will use a method of changing variables
(Scher, et al., 1997) such that (13) is reduced to an
LMTI in all variables.

First, partition the matrix 7 and its inverse as

7= ar NO 7= OoxX MO
- T B - I p
v wh dr z
where X, Y OR™ are symmetric matrices. Note that
the equality V™'V =1 gives

MN'=1-XY . (14)
Define

Fl:DX’ 1% FZ:U YE'
B off 9 ~H
Then it follows that
VF,=F,, FVF =FF= EY [% (15)
o rg

Now, define a new set of variables as follows

A= XAY + XBC + BCY + MA,N' + BDC,
MB,, (16)
C=CN'

>
1

Therefore, given positive definite matrices X, Y and
invertible matrices M, N, the controller matrices

A.,B, and C, can be uniquely determined by A, B

and C. By using matrix operation, it is straight-
forward to verify that

—_ B 4 O —, 0O E O
FATE=gA*EC A B pppel B D
B 4  AY+BCH £ +CE 0
_., Op” o0 O — _OXH, +BH,U
4o =%Ql/2 \opd FH=07' 770
0 CR™ [ g H, 5|
(17)

The following theorem gives the main result on
output feedback quadratic-d guaranteed cost control
based on the LMI approach.

Theorem 3: For a given disk D(a, r), there exists
an output feedback quadratic-d guaranteed cost
controller of the form (10) for the uncertain system
(8) and cost function (9) if and only if there exist a
scalar € >0, symmetric positive definite matrices

X and Y, matrices ,:1, B and C such that

%—X -1 XA+BC+ax A+al

o* -Y A+al AY + BC +aY

B* * -r’X -riI

0 * * * 4

D* * * *

%* * * *

%* * * *

E* * * *

XH, + BH, 0 0 0 S
H, 0 0 (S
0 E 0" o B
0 YE; +C'E'" rYQ" rC'R"D
iy o . . %<o, (18)
* -1 0 0o O
: . g o D
* * * —gl %

where * replaces matrix blocks that are readily
inferred by symmetry.



Proof: Post- and pre-multiplying the matrix
inequality (13) by the matrix diag {Fl, F,I,1, 1} and
its transpose, respectively, and using (15) and (17),
the result of Theorem can be obtained.

Remark 3: Note that (18) is an LMI in all variables.
Therefore, the existing LMI tool (Gahinet, et al.,
1995) can be used to find a feasible solution if exists.

Remark 4: Given any feasible solution to the LMI
(18) in Theorem 3, an output feedback quadratic-d
guaranteed cost controller can be constructed as
follows:

1. Compute invertible matrices M and N by
using the singular value decomposition of
1-XY.

2. Obtain the controller matrices A4,, B, and
C. by solving (16).

Remark 5: It follows from Theorem 3 that if the
LMI (18) is feasible, then the system (8) has an
output feedback quadratic-d guaranteed cost
controller, and the corresponding closed-loop cost
function is bounded by

J< r%/\m UXU). (19)

The upper bound (19) for the closed-loop cost
function is apparently not a convex function in X
and €. Hence, finding the minimum of this upper
bound cannot be considered as a convex optimization
problem. Instead, the following optimization problem
is introduced to find a suboptimal value for this
bound.

minz=€+A

). (18
g 19 20)
i), UXU<A
This is a convex optimization problem with LMI
constraints, which can be effectively solved by
existing LMI software.

4. ILLUSTRATIVE EXAMPLE

Consider an inverted pendulum system, the
discretized model for this system with parameter
uncertainty is given by Lewis (1992)

01.0544  0.1018-0.08y 0 0.0-0.08y0
a a
1.0975 1.0544-0.8 0 0.0-0.38
x(k+1)= D ¢ =10
5—0.005 —0.0002+0.08y 1 0.1+0.08yD
T 0.0998 -0.0049+0.8y 0 1.0+0.8y
[+ 0.050
a a
-1.0
+U k
Saosgd ),
010 g
[37.2958 0 0 00O
k)= ),
(k) % 0 0 1 0Br()
(21)

where xOR* is the state, R is a force to be
applied to the cart, y[OR? is the measurement
output, |y| < 0.5 is an unknown parameter. The initial

state x, may be unknown, but satisfies xyx, <1.

It is required to construct a suitable output feedback
controller of the form (10) for this system such that
for any admissible realization of the uncertain
parameter Y, all the closed-loop poles locate in a

disk of centre 0.5+ ;0 and radius 0.5, and a corres-
ponding upper bound for the cost function

J= i[zxf (k) +2x3 (k) +0.5x3 (k) +0.5x2 (k) + 0.01ue* (k)]

(22)

is minimized. Thus, we will apply the approach
proposed in this paper to find the optimal output
feedback quadratic-d guaranteed cost controller. The
system (21) is of the form given in (8) with

H =[-008 -08 008 03],
E =[0 05 0 03], H,=E, =0,
0 =diag{2,2,0.5,0.5, R=0.0l.

It is found, using the software LMI Toolbox in
Matlab, that the corresponding optimization problem
(20) is feasible. Therefore, There exist the output
feedback quadratic-d guaranteed cost controllers for
the system (21) with the cost function (22), and using
the optimal solution to the problem (20) and the
constructive procedure for the controllers in Remark
4, a sub-optimal output feedback quadratic-d
guaranteed cost controller is given by

1+ 0.2129 0.0783
0

0.0830 -0.74700

. g 04942 0.6303 -0.0292 —0.0476D
ik +1) = k)
83.5815 -1.1164 0.7969  0.0948 g
gl.2121  0.1218  0.2057 -1.3057Q
00.0257 -2.91870
O O
+ 0.0559 —4.9219%(1(),
0-1.0069  0.1760

%0.2434 4.5105%
u(k)=[-1.0360 -03522 02649 -2.6485|3(k).

The corresponding upper bound for the closed-loop

cost function is J <5.002x10%. For constant values
of the uncertain parameter y, a plot of the closed-

loop pole locations with this controller for the
allowed range of y is shown in Fig. 1.

5. CONCLUSIONS

In this paper the output feedback quadratic-d guar-

anteed cost control with disk pole constraint for
uncertain discrete-time systems has been solved. The
feasibility of a certain LMI has been proved to be
necessary and sufficient for the existence of
guaranteed cost controllers, and the feasible solutions
to this LMI can be used to construct a controller with



the desired properties. Furthermore, a convex
optimization problem has been introduced to select a
guaranteed cost controller which minimizes the
upper bound on the closed-loop cost function. A
numerical example showed the potential of the
proposed approach.
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Fig. 1 Closed-loop poles
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