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Abstract: This paper addresses robust fuzzy mixed LQ/H,, control design for nonlinear
discrete-time systems in the presence of norm-bounded time-varying uncertainties and
state delays. Based on Takagi-Sugeno fuzzy models, the mixed LQ/H,. index is
introduced to nonlinear systems, which simultaneously guarantees an upper bound of
LQ cost and its robustness for unknown external disturbance in the sense of induced H,,
norm. Applying PDC techniques, the gains of robust state feedback controllers of
subsystems are derived by the numerical solutions of a set of coupled LMIs, and then
the overall LQ/H_. controller is constructed by fuzzy blending of the local linear
controllers. Copyright © 2002 IFAC
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1. INTRODUCTION

In the control engineering practice, modern control
theory should take one thing with another. For
example, in general, classical control theories depend
on the precision of plant models and the restriction of
disturbances, but almost all control systems operate
in highly uncertain environments and suffer unknown
disturbances. Also, extensive engineering systems
subjecting to nonlinearities and time-delays, in which
the well-known linear control theory does not hold.
On the other hand, most engineering problems are
multiobjective, thus often demand that the controller
design should be multiobjective. Today, around all
above challenging subjects, there have already been a
great deal of involved works.

In the last two decades, many researchers have
worked on robust linear quadratic (LQ) problem in
the attempt to guarantee robust stability and robust
performance in the presence of plant uncertainties.

The H,, control, against unknown disturbances, has
also attracted much interest in the literatures. Over
the last decade, mixed H,/H._ control problems,
which combine H, performance index with H_
constraint, have been proposed for both linear
continuous-time systems (Bernstein and Haddad,
1989; Khargonekar and Rotea,1991; Rotea and
Khargonekar, 1991; Zhou et al., 1990) and discrete-
time systems (Haddad et al., 1991; Kaminer et
al.,1993). But the robust mixed H,/H., control for
uncertain systems has turned out to be very difficult
by far (e.g. Doyle et al., 1994; Zhou et al., 1994).

In the meantime, the notion of guaranteed cost
control for wuncertain systems (Petersen and
McFarlane, 1994; Fishman et al., 1996) was used to
establish an upper bound on the closed-loop value of
a LQ cost. The guaranteed cost control was then
extended to uncertain time-delay systems for
continuous-time cases (Moheimani and Petersen,
1997) and discrete-time cases (Guan, 1999;



Mahmoud, 2000). It should be noted that, as a
relaxed case of the H,/H, problem, a kind of so-
called mixed LQ/H,, control might be realistic with
the guaranteed cost instead of the optimal LQ cost.
Recently, Kogar (2000) showed the robust H,., and
guaranteed cost control design can be reformulated
as minimax control problems for an auxiliary
dynamic game. However there exist fewer results on
robust mixed LQ/H_, control for time-delay systems.

For more complex engineering systems, especially
with nonlinear dynamics, fuzzy control has emerged
as one of the most powerful and successful
approaches instead of classical control. In the past
years, a number of fuzzy control approaches, which
mainly based on the human experience or knowledge
(Zadeh, 1973; Nakanishi et al., 1993), have been
carried out via input fuzzifier, fuzzy inference and
output defuzzifer. Accompanying with its theoretical
intuitivity and practical acceptability, this kind of
approaches has proved extremely difficult to do basic
stability analysis, and hard to form a general design
methodology for conventional fuzzy control systems.

Contrastively, Takagi-Sugeno fuzzy-model-based
methods (Takagi and Sugeno, 1985; Tanaka and
Sugeno, 1992) avoid the above drawback, in which
the nonlinear dynamical systems are characterized by
smoothly connecting a series of local linear models
through selected membership functions. For each
local linear system, some analysis and design tools in
classical control theory are used. In particular, a kind
of design methods named parallel-distributed
compensation (PDC) was proposed based on Takagi-
Sugeno model (Wang et al., 1996). Under this
framework, the resulting overall controller, which is
nonlinear and non-local in general, is a fuzzy
blending of each local linear controller associated to
the local model. More significantly, PDC integrating
linear matrix inequality (LMI) offers a numerically
tractable means for a great deal of control problems,
such as stability analysis and synthesis (Wang et al.,
1996; Tanaka et al.1998; Cao and Frank, 2000), H_,
control (Hong and Langari, 1998) and multiobjective
control (Li et al., 1999). The issues of robust
stabilization based on Takagi-Sugeno fuzzy models
have already obtained some results (Tanaka et al.,
1996). Recently robust H_ control for uncertain
fuzzy systems have been discussed, see, Lee et al.
(2000, 2001). However there are a few publications
on multiobjective (for example, mixed H,/H.,, or LQ/
H..) problems. The fuzzy mixed H,/H., controller has
been proposed (Chen ef al., 2000) via observer-based
output feedback, but uncertainties and time delays
are not considered.

Motivated by the above observation, this paper
considers nonlinear systems described by Takagi-
Sugeno fuzzy models, which subject to state time-
delays and time-varying but norm-bounded
uncertainties. First, introduce the mixed LQ/H., index,
which implies that LQ cost has an upper bound and
that the induced H., norm, from external disturbances
to LQ cost, is less than a prescribed level. Based on

Lyapunov stability theory, applying PDC techniques,
the gains of robust state feedback controllers of
subsystems are derived by the numerical solution of a
class of coupled LMIs, and then the overall mixed
LQ/H,, controller is constructed by fuzzy blending of
the local linear controllers. Note that, at present, the
solution of LMI can be worked out numerically very
efficiently (Boyd et al., 1994). Hence the LMI-based
design approaches without any parameter tuning is
easy to use in practice. It is needed to point that the
research framework of this paper covers both
continuous and discrete case of nonlinear systems.
With restriction of paper space, here only the later is
addressed. The notations used in this paper are
standard.

2. PROBLEM STATEMENT AND ANALYSIS

Consider a class of nonlinear discrete-time systems
with uncertainties and state delay described by the
Takagi-Sugeno models, which consist of a family of
fuzzy IF-THEN rules as following

Plantrule i:

IF x,(k)is p, and---and x, (k) s p1,, (1)
THEN x(k +1)=(4, + A4,(k))x(k)
+ (A, + A, (k)x(k - d)
+(B,+ AB(k)u(k) + B, w(k),
i=12,--r
with initial condition
x(k)=0, —d<k<0, x(0)=x,- 2
where 1 is the fuzzy set with j=12,... g<n, r is
the number of fuzzy rules, x(k)e R"is the state,
u(k)e R™is the control input, w(k)e 1,[0,] is the
disturbance input, 4 >0is the time delay constant
and AA(k),A4 ,(k),AB(k) are time-varying but norm-
bounded uncertainties with the following form
[A4, (k) AB;,(k)]=H,F(K)[E, Ey]>
Ad,(k)=H,F,(kK)E, » i=12,-,r 3)
H.H,,E ,Ey,E, are
matrices of appropriate dimensions, and F(k),

where known constant

F,(k) are unknown real time-varying matrices with

Lebesgue measurable elements
F'(k)F(k)<I and F/(k)F,(k)<I -

satisfying

Let h (x(k)) be the normalised membership functions
of the inferred fuzzy set y ., i.e.
g
w, ek =] T, (5, (k)
j=1
(x(k 4
T C. ) “
21, (x(k)
i=1
For the sake of notation simplification, thereinafter,

the time dependence on k in the variables will be
omitted wherever no confusion arises. Assume for all

time ks, (x)=0, i,u(x) > (), it is obvious that

i=1



h(x)20, ﬁh,,(x)=1a i=l-r (%)
i=1
By using a center-average defuzzifer, the dynamic
fuzzy models (1) can be represented by the following
overall model (6), which combines all the local
models through membership functions.

x(k+1)= 3 (4, + A4, ()x(h)
+ (4, + A4, (k))x(k—d) ©)
+(B, + AB,(k))u(k) + B, w(k)].
Associated with systems (1), the local state feedback

controllers are considered as
Controlrule i:

IF x, is 4, and ---and x, is 1t,, @)

THEN u, (k) =K x(k) » i=12,-,r
Accordingly, the final overall fuzzy controller
follows

u(k) = 3 b, (K x(k): ®)

The resulting fuzzy closed-loop system is then
described by
x(k+1)= (4. + HF (k)E,.)x(k) ©)
+(A4, + H,E,(k)E ) x(k—d)+ B w(k)
where

A=Y X1 0, (4, + B )

i=1 j=1

B =Y Y h (b (E +E,K,)

i=1 j=1

A=Y h0H, H, =Y h(H,
i=1 =l

E, =Y h(E, B,=3 h()B, "
i=1 i=l

Similar to the well-known linear quadratic control
theory, in the following, the LQ cost is defined for a
class of fuzzy discrete-time systems.

Definition 2.1: Associated with the system (6) and
controller (8), or with the closed-loop system (9), the
linear quadratic (LQ) cost is defined as

J= i[ x"(k)Ox(k) +u” (k)Ru(k)] (10)

WhereOgQ:QTe R™" and ()SR:RTE R™™  are

given weighting matrices of state and control input
respectively.

Remark 2.2: By introducing the auxiliary output
z(k) = Cx(k) + Du(k)  with C=[Q% 0]" and
D=[0 R A 1", the above LQ cost can be rewritten

as J=iZT(k)Z(k)=HZH§'Here HH2 denotes the 7,
k=0

norm. Substituting controller (8) in, the auxiliary
output of the closed-loop system is given as

2(k)=Cex(k) With €, =3 j (x)(C + DK,)-

i=1

Remark 2.3: In general, it is very difficult to get an
optimal LQ cost for the fuzzy systems with

parametric uncertainties. In this paper, a sub-optimal
LQ is used instead of optimal LQ, which is actually
an upper bound ¢on LQ, i.e. J<¢. In other words,
the notation of LQ here is in line with that of what is
often called guaranteed cost problem with respect to
robust control of linear uncertain systems in
references.

While taking into account the external disturbancew,
the H_ norm index y (or H_, constraint level) may be
where

introduced by notation

21, < I »
y characters the impact of external disturbance W on

LQcost J.

Definition 2.4: Associated with the closed-loop
system (9), the mixed LQ/H., index is defined

T =2l <72 ul; +e (11)
where o >0is the upper bound on LQ and y>0is
the attenuation level of disturbance.

Obviously, while external disturbance w(k)=0,
index (11) reduces to J<q, i.e. LQ cost has an

upper bound.

Definition 2.5: The controller, to make the resulting
fuzzy closed-loop system satisfying above mixed
LQ/H., index for all admissible uncertainties and
time delays, is said to be a robust fuzzy LQ/H.
controller, for short, a LQ/H_, controller.

Now, following theorem investigates the existence
condition of LQ/H., controller and indicates that the
closed-loop system satisfying the LQ/H., index is
always robust stable. Before the proof of theorem, a
useful lemma is borrowed.

Lemma 2.6 (Deng 1997): For any vectors g,he R"

and any positive-definite matrix Pe R"™", inequality
2a" Phb<a” Pa+b" Pb holds.

Theorem 2.7: For system (6) and a prescribed real
number y > 0, there exists a fuzzy LQ/H., controller

Kl e Rﬂtx)’l ,
i=12,---,r, if there exist positive-definite symmetric

(8) with a set of gain matrices

matrices P,§e R™ satisfying condition
x" (K)[3(4. + HF (k)E.)" P(A. + HF (k)E,.)
—P+S+C/CIx(k)+x" (k—d)[3(4, (12)
+H ,F,(k)E,) P(4,+ H ,F,(k)E,)— S 1x(k —d)

+w' (k)(3B.PB, —y*I)w(k)<O0.
Agreeing with the condition, the resulting closed-
loop system (9) is robust stable and satisfies the
LQ/H,, index (11).
Proof:  For positive-definite symmetric matrices
P, S, let the following Lyapunov function candidate

for the closed-loop system (9)
k-1
V(x,k)=x"(k)Px(k)+ ¥, x" (1)Sx(])- (13)
I=k—d
Along the trajectories of system (9), the first-forward



difference of the Lyapunov function (13) is given by
AV (x,k)=V(x,k+1) -V (x,k) =

x" ()[(4. + HF(K)E.)" P(A. + HF (k)E.)— P+ S1x(k)

+x" (k)(A. + HF (k)E.)" P(4, + H,F,(k)E,)x(k —d)
+x" (k)(A. + HF (k)E..)" PB,w(k)
+w' (k)B, P(Ac + HF (k)E.)x(k)
+ xT(k - d)[(zd + ﬁdFd(k)Ed)TP(Zd + EdFd(k)Ed)
—SYx(k—d)+x" (k—d)(A, + H,F,(k)E,)" PB,w(k)
+x"(k—d)(4, + H,F,(k)E,)" P(A. + HF (k)E.)x(k)
+w' (K)BP(4, + H,F,(k)E)x(k—d)
+w' (k)B! PB,w(k).
Applying Lemma 2.6 to the right-hand side of above
equality, it follows
AV (x,k)
<x" (k)[3(4. + HF (k)E.)" P(A. + HF (k)E_.)
— P+ S]x(k) (14)
+x"(k—d)[3(4, + H,F,(k)E,)" P(4,
+ H,F)(k)E,) =S x(k—d)
+3w" (k)B] PB, w(k).
Considering the condition (12), and letting w(k) =0,
the following (15) holds
AV (x,k) =V (x,k+1) =V (x,k)
<—x"(k)CIC.x(k) <0
and then, the robust quadratic stability of the closed-
loop system (9) is guaranteed. Furthermore, reusing
the condition (12) with w(k)-0 and recalling
z(k)=C.x(k) , obviously
V(x,k+1)=V(x,k)
<=z (k)z(k) + 7w (k)yw(k).
Substituting (13) into (16), it follows
x" (k+ 1) Px(k +1) — x" (k)Px(k) + x" (k)Sx(k)
—x" (k= d)Sx(k —d) + 2" (k)z(k)
<y*w' (k)w(k).
Summing up above inequality over the time
dependence section k=0->o, keeping in mind
llﬂ x(k)=0 and initial condition (2), it is not

(15)

(16)

difficult to have

J =[], <77l +x" (0)Px(0).- (17)
By imposing a cost upper bound « on x”(0)Px(0),
obviously, the resulting closed-loop system (9)
satisfies the LQ/H_, index. O

Remark 2.8: In above proof, the LQ cost is related to
initial condition. In detail, the upper bound of LQ
cost is given by

d-1

o = x"(0)Px(0) + ZxT (I-d)Sx(I-d)-

1=0
For the simple case of initial condition (2), it is easy
to get o >x!Px,, and then JSYQHWHZ +0 . While
focusing on external disturbance, from (17) with zero
initial condition, the attenuation level of disturbance
in the sense of induced H..norm is given by .

3. FUZZY CONTROLLER SYNTHESIS

In this section, the main results are presented on how
to design the robust fuzzy LQ/H,, controller defined
in last section. Using inequality manipulations and
parallel distributed compensation (PDC) techniques,
the condition (12) in Theorem 2.7 is reduced to a set
of coupled LMIs. The local state feedback controllers
are then derived by the numerical solutions of the
coupled LMIs and the overall robust fuzzy LQ/H.,
controller is constructed by fuzzy blending of the
local linear controllers.

Lemma 3.1(Li 1997): Let 4,D,F and F be real
matrices of appropriate dimensions and H FH <1. For

any matrix P=P" >0 and scale £>0 such that
P—eDD” >0 and
(A+ DFE)" P"'(A+ DFE)
<A"(P-eDD")'4+e'E"E.

Theorem 3.2: Given system (6) and a prescribed H.,
norm levely >0, there exists a robust fuzzy LQ/H.,
controller if there exist positive-definite symmetric
matrices X, We R™,Y,e R™",i=12,---,r, and
positive scalars Ay Ay such that the following coupled
LMIs (18)-(19) are feasible. Moreover a set of local
controllers is given by u (k)=Y,X 'x(k) and the

overall robust fuzzy LQ/H., controller is constructed
by (8) with LQ cost a>x] X', -

M, <0, i=12--r (18)
I, +11, <0, i<js<r (19)
where
-X+W 0 0 *
0 -w 0 0
0 0 —yI 0
AX+BY, 0 0 —X+AHH
M,=|EX+EY 0 0 0
Cx+DY 0 0 0
0 4,X 0 0
0 EX 0 0
. O 0 B, 0
* ok 0 0 0
0 0 * * 0
0 0 0 0 *
0 0 0 0 0
A0 0 0 0
0o -1 0 0 0
0 0 —-i1X+AHH, O 0
0 0 0 -1 0
0 0 0 0 -1x]

in which * represent blocks that are readily inferred
by symmetry.

Proof: Assume there exist positive-definite
symmetric matrices P,Se R™, real matrices
K,e R™, i=12,---,r and positive scalars ¢ ¢,,

applying Theorem 2.7 and Lemma 3.1, the condition



(12) is guaranteed if
X (k) 345 (P —g,HH") " 4. + 3¢ 'ELE,.

P+§+CIC, (k) (20)

+x"(k—d)[34] (P —e,H,H,)" 4,
+36,'E'E, — STx(k —d)

+w' (k)3B,PB, —y*I)w(k)<0
and
P'-gHH" >0, P"'-¢,H,H! >0. (21)

For any [x"(k) x"(k-d) w'(k)]' 20, above

inequality (20) holds if
diag{]\?l M, M, }< 0 (22)

where
M, =34 (P —eHH")" 4,
+3¢]'ElE.-P+S+C/C,,
Mz = 3ZdT(P_1 - gzﬁdﬁj)_lzd
+3¢,'EJE, - S,
M,=3BPB,-y’I.

Furthermore, the inequality (22) is equivalent to
zzh[ (x)h,-(x)diag{MU/ M, M, }<0 (23)
i=1 j=1

where

M,;=3(4,+B,K,) (P —gHH/)" (4 +BK,)

+3¢](E, + EyK,) (E, + Ey,K )~ P+S

+(C+DK,)" (C+DK,),
M, =34, (P —e,H, H}) "4, +3¢,'ELE, - S,
M, =3B, PB, N

Considering (5), above (23) can be rewritten as

Zh,‘ (x)hi(x)diag{Ml,-i M, M3i}

i=1

+ 3 h(00h, (x)diag M, + M
i<j
<0 (24)
and in turn it is guaranteed by the following two class
of inequalities

M, +M2j M3I+M3j

1ji

diagiM,, M, M,}<0 i=12,---,r, (25)
diag\M,, +M,, M, +M, M, +M; }<0,
i<j<r. (26)

On the other hand, obviously, the inequalities (21)
are guaranteed if
P'-egHH >0, P'—¢,H H >0,
i:1525”'7r (27)
By combining (27) and applying Schur complements
to inequalities (25) and (26), furthermore by using
some matrix manipulations and setting X =P,
szilspil: Yr:K<P_1: 2, :18 and ), :lga
1 1 1 3 1 2 3 2
respectively the inequalities (18) and (19) can be
deduced from (25) and (26), in which the conditions
(27) are embedded. Thus the proof is completed. O

In addition, as an extension of Theorem 3.2,
following corollary can be used to search the
minimal upper bound on LQ, which is often referred

to the optimal guaranteed cost control problem.

Corollary 3.3: The optimal upper bound o with
respect to the controller in Theorem 3.2 is given by
solving following convex optimization problem with
a new decision variable ¢:

minimize ¢
subject to LMIs (18), (19) and
T
- X, :| <0- (28)
XO -

Proof: Recalling Remark 2.8 and Schur complements,
it is easy to get LMI (28). The other is just the same
as proof in Theorem 2.7. O

Example 3.4: Consider the uncertain discrete-time
fuzzy system (1) with following parameter matrices

15 1 0.8 0.1 1.0
Al = N A2 = b Bl =B2 = N
05 1.2 01 O 0.8
0 0.2 0 0
A, = s Ay = i
0.18 0.15 0.08 0.02

0.06 0.12 0.10
Bwl = BwZ = ’ Hl = H2 = ’
0.05 0.10 0.10

0.15 0.05 0.03
Ey=Ey,= "H, =H, = i

0.10 0.05 0.05
0.20 0.15 0.05 0.05
E =E,= b L =L =
0.15 0.10 0.05 0.03

and x,=[1 1]". Applying Theorem 3.2 with
0 =1I,R=0.5, for attenuation level y =1, the robust

fuzzy LQ/H., controller (8) is obtained with gains of
the local controllers as K =[-1.4175 -1.0398]and
K,=[-0.7376 -0.0911], and with LQ cost
0c=14.57. Furthermore, by Corollary 3.3, the optimal
LQ upper bound " =11.3221is ensured by the
controllers K, =[-1.3939 -1.0503] and
K,=[-0.7204 -0.0887].

Remark 3.5: Based on Theorem 3.2, let B =7y?, the

so-called optimal H_ controller with minimal
attenuation level 7y’ :\/ﬁ can be obtained by

following  optimization  problem: minimize j3
subjecting to LMIs (18) and (19). Reconsider
Example 3.4 by adding new decision variable f, the

result shows y* = \/ﬁ =0.34.

4. CONCLUSION

Based on Lyapunov stability theory, applying PDC
techniques, a systemic framework to analysis and
synthesis the robust fuzzy LQ/H. controllers for
nonlinear systems is presented via Takagi-Sugeno
models. All the issues about such controllers,
including existence condition, design approaches and
the optimization of LQ cost, are cast to feasible
problem of LMIs. The numerical examples illustrate
the results. An analysis of the conservativeness of the
proposed results will be the subject of further
investigations.
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