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Abstract: In this paper, an extended class of flexible shop scheduling problems
is considered. First, the problem is translated into a mathematical programming
formula, i.e., a mixed-integer programming problem. This makes it possible to
apply standard packages of mixed integer programming solvers and, while lots of
computational time is required in general, to obtain the optimal schedule. Then, in
order to seek the schedules close to the optimal for larger-scale problems, a solution
method by adopting genetic algorithms based on the formula is newly designed.
Through some computational experiments, the effectiveness and the potential of the
proposed approach are investigated. Copyright c© 2002 IFAC
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1. INTRODUCTION

Recently, extensive researches on scheduling have
been reported from the theoretical as well as
the practical view points (Morton, et al., 1993;
Tanaev, et al., 1994; Pinedo, 1995; Blazewicz, et
al., 2001; Brucker, 2001). The scheduling problems
are categorized into some groups with respect to
machine environment (e.g., single machine prob-
lems, parallel machine problems, job shop prob-
lems, etc.), job characteristics (e.g., the type of
precedence relations, with/without preemption,
etc.) and optimality criteria (e.g., the maximum
completion time, the maximum lateness, etc.).
Here, as for the optimality criteria (i.e., objec-
tive functions) of schedules, regular ones (i.e.,
objective functions which is monotone with re-
spect to completion time of all jobs) have been
considered in almost all researches (Tanaev, et
al., 1994; Brucker, 2001). While there are many
applications in which non-regular objective func-
tions are appropriate, we consider typical criteria
of the regular type in the paper.

As for the solution of practical scheduling prob-
lems in general, most of methods proposed in

the past researches use some sort of dispatch-
ing rules, and researchers’ efforts have been con-
centrated upon clarifying “which rules fit which
problems.” The authors have presented a new
scope for the study of the practical scheduling
problems by proposing a method to solve them
without relying upon dispatching rules (Tamaki,
et al., 1995; Tamaki, et al., 1999). Namely, the
practical scheduling problems of the parallel ma-
chine type are transformed into the mathematical
programming problem, and feasible schedules are
represented by strings. This formulation makes it
easy to design meta-heuristics (Reeves, 1993) such
as simulated annealing and genetic algorithms.

This paper deals with a class of flexible shop
scheduling problems. That is, each shop includes
more than one machines of the parallel machine
type in the framework of job shop scheduling
problems. So far, several approaches have been
reported to the flexible shop problems, almost
all approaches adopt some kinds of heurisitic
procedures (Chen, et al., 1999; Yang, et al., 2000),
and there are few approaches based on the formal
framework (Cheng, et al., 2001).
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In this paper, to this class of scheduling problems
where several auxiliary restrictions originated
from the necessity of set-up processes are addi-
tionally considered, the authors newly propose a
method of modeling the problem based on a math-
ematical programming approach (i.e., by using
mixed-integer programming formula (Namhauser,
et al., 1989)), and a way of designing a solution by
adopting genetic algorithms (Holland, 1975; Gold-
berg, 1989).

In the following, the scheduling problem is revis-
ited and is translated into a mathematical pro-
gramming problem (in Section 2). A way of ap-
plying genetic algorithms based on the formula is
presented (in Section 3), where a way of genetic
representation of a schedule as well as a procedure
of translating a genotype to a phenotype (i.e.,
a feasible schedule) are also introduced. Some
computational experiments using several exam-
ples have been actually carried out. Results (in
Section 4) indicate that the proposed approach is
effective, and that our method can give satisfac-
tory solutions to the scheduling problems within
reasonable time and could possibly support the
scheduling engineers.

2. SCHEDULING PROBLEM

2.1 Description of the Problem

There are m machines Mi (i = 1, . . . , m) and
n jobs Jj (j = 1, . . . , n). Each job Jj includes
a series of nj operations Ok (k = nj−1 +
1, . . . , nj ; nj =

∑j
�=1 n� ; n0 = 0), and these

nj operations are to be processes in this order.
To each operation Ok (k = 1, . . . , N ; N =
nn =

∑n
j=1 nj), the set of available machines

Ak and the type δk are associated. The type of
an operation represents the kind of production,
and the combination of the machine and the type
determines production speed.

In making a schedule, following restrictions should
be taken into account.

(a) Restriction of machines : A kind of opera-
tions can be processed on one of the fitted
machines. (This is due to the mechanical
structure, size, weight, etc. of the machines
and to the fitness of operations to machines.)

(b) Set-up time : If the types of two operations
which are processed successively on any ma-
chine differs, a set-up time is needed between
their processing. The set-up time consists of
two parts : the time required before process-
ing, and the time required after processing.

(c) Lead time : To each operation, the mini-
mum and maximum durations before start-
ing the processing of the following operation

are specified. (This is due to the material
conditions, temperature control, etc.)

To describe the scheduling problem, we need the
following notations and parameters. With each
machine Mi (i = 1, . . . , m),

µiδ : time per unit product on Mi when an
operation of type Tδ is processed

is associated. With each job Jj (j = 1, . . . , n), the
following parameters are associated :

dj : due date,
rJ
j : required quantity, and

nj : number of operations.

Finally, with each operation Ok (k = 1, . . . , N),
the following parameters are associated :

δk : type of Ok,
rO
k : required quantity (the value of rO

k is
determined according to that of rJ

j ),
s1

k : set-up time required before processing,
s2

k : set-up time required after processing,
s3

k : minimum lead time,
s4

k : maximum lead time, and
Ak : set of machines which can process Ok.

As for evaluation of schedules, various kinds of
criteria may be considered. It is impossible, how-
ever, to take all of them into consideration. So,
we consider here the maximum completion time
Cmax and the total tardiness Tsum :

z1 = Cmax = max
j

tFnj
= max

k
tFk , (1)

z2 = Tsum =
∑

j

{
max

(
0, tFnj

− dj

)}
, (2)

where

tSk : the start time of the operation Ok, and

tFk : the completion time of the operation Ok.

Then, as a scalar objective function, we use the
weighted sum

z = w1 z1 + w2 z2 = w1 Cmax + w2 Tsum , (3)

where weights w1 and w2 are nonnegative.

2.2 Mathematical Programming Model

The scheduling problem defined above is catego-
rized as flexible shop problems (or flexible shop
problems, generalized shop problems (Krüger, et
al., 1998)), about which little have been studied
(Blazewicz, et al., 2001; Brucker, 2001). In this
paper, by introducing the following variables x,
y and u, the scheduling problem is newly trans-
formed to a mathematical programming problem.



xik (i = 1, . . . , m ; k = 1, . . . , N) :
xik = 1 if Ok is assigned to Mi, and xik

= 0 otherwise,

ykk′ (k, k′ = 1, . . . , N) :
ykk′ = 1 if Ok′ succeeds Ok when Ok and
Ok′ are assigned to the same machine,
and ykk′ = 0 otherwise,

ukk′ (k, k′ = 1, . . . , N) :
ukk′ = 1 if xik = xik′ (for all i), and ukk′

= 0 otherwise,

Here, the values of u are dependent on those of
x and y, and are uniquely determined according
to them. Moreover, the completion time tF is also
determined, once the assignment x and the start
time tS are fixed. Hence, the independent variables
(i.e., the decision variables) are x, y and tS.

The optimal schedule with respect to the objec-
tive function z of (3) is naturally a semi-active
schedule. (A schedule is called “semi-active” if
there does not exist any operation which could
be started earlier without altering the processing
order or violating the restrictions.) If one restricts
the class of schedules to semi-active schedules, the
duplet (x, y) uniquely determines a schedule. On
the other hand, a schedule evidently determines
the duplet (x, y) uniquely by definition. Thus,
the duplet (x, y) and a semi-active schedule corre-
spond one-to-one. So, z of (3) becomes a function
of x and y, and the following mathematical pro-
gramming problem can be obtained.

Problem MP : Minimize

z = w1z1 + w2z2 (4)

subject to
m∑

i=1

xik = 1 (k = 1, . . . , N) (5)

xik = 0 (i �∈ Mk ; k = 1, . . . , N) (6)

xik ∈ { 0, 1 }
(i = 1, . . . , m ; k = 1, . . . , N) (7)

ukk′ ≥ xik + xik′ − 1 (i = 1, . . . , m ;
k, k′ = 1, . . . , N ; k �= k′) (8)

ukk′ ≤ xik − xik′ + 1 (i = 1, . . . , m ;
k, k′ = 1, . . . , N ; k �= k′) (9)

ukk′ ∈ { 0, 1 }
(k, k′ = 1, . . . , N ; k �= k′) (10)

ykk′ ≤ ukk′ (k, k′ = 1, . . . , N ; k �= k′) (11)

ykk′ + yk′k = ukk′

(k, k′ = 1, . . . , N ; k �= k′) (12)

ykk′ ∈ { 0, 1 }
(k, k′ = 1, . . . , N ; k �= k′) (13)

tSk ≥ 0 (k = nj−1 + 1 ; j = 1, . . . , n) (14)

tSk ≥ tFk−1 + s3
k−1 (k = nj−1 + 2, . . . , nj ;

j = 1, . . . , n) (15)

tSk ≤ tFk−1 + s4
k−1 (k = nj−1 + 2, . . . , nj ;

j = 1, . . . , n) (16)

tSk ≥ tF� +
(
s2

� + s1
k

)
∆�k − M (1 − y�k)

(k, � = 1, . . . , N ; k �= �) (17)

tFk = tSk +
m∑

i=1

(
rO
k µiδk

xik

)
(k = 1, . . . , N) (18)

z1 ≥ tFnj
(j = 1, . . . , n) (19)

z2 ≥
n∑

j=1

max ( 0 , tFnj
− dj ) (20)

Here, the parameter ∆�k in the equation (17) is a
constant defined by

∆�k =
{

1 , if δk �= δ� ,
0 , otherwise .

(21)

M is also a constant with sufficiently large positive
value.

In the above formulation (Problem MP), the equa-
tions (5) through (7) fix the machines to which op-
erations are assigned. The equations (11) through
(13) determine the (possible) processing order of
the operations, and the equations (8) through (10)
represent the “flag” whether each pair of opera-
tions should be assigned to the same machine or
not. The start time of operations are given by the
equations (14) through (17), and the completion
time of operations are given by the equation (18).
The equations (19), (20) and (4) give the value of
the objective function z of (3).

There appears a nonlinear operator “max” in
the right-hand side of the equation (20). This
inequality can be equivalently rewritten by using
the set of linear inequalities (e.g., a ≥ max {b, c}
is equivalent to a ≥ b and a ≥ c). Therefore,
the problem MP is a mixed-integer programming
problem.

3. META-HEURISTIC SOLUTION

Through the MP formula in Section 2.2, the
scheduling problem described in Section 2.1 can
be solved by applying mathematical programming
techniques (e.g., branch-and-bound procedures).
This approach, however, need much computa-
tional cost in general. And besides, in this paper,
the authors consider an approach in which genetic
algorithms are used for obtaining better, possibly
near-optimal, schedules.

In order to apply meta-heuristics such as genetic
algorithms and simulated annealing methods, it
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Fig. 1. Outline of the application of meta-heuristics. When
a genetic algorithm is adopted as a meta-heuristic pro-
cedure, the “generation (modification)” and the “ac-
ceptance/rejection” parts are implemented by using
“crossover & mutation” and “selection/reproduction”
operations, respectively.

is convenient (or required) to represent a schedule
symbolically (e.g., by using a string). In Fig. 1, the
outline of the application of the meta-heuristics is
shown.

The simple way to represent a schedule S by a
string is to use a binary string B (i.e., to use
the linear array obtained by lining up {xik} and
{ykk′} in the lexicographical order). This method
seems not to include any problem when we only
looks at the process of determining B from S.
However, if we look at the reverse process, we
immediately face with the problem that almost
all strings correspond to infeasible schedules. This
problem causes serious inefficiencies in the appli-
cation of meta-heuristics that the search can be
proceeded by one step only after an extremely
large repetition of producing new strings.

As mentioned in Section 2.2, one can restrict a
search within the set of semi-active schedules.
Hence, a method to produce a feasible schedule
(i.e., a semi-active schedule) from an arbitrarily
given string of a sufficient length can be consid-
ered, and this procedure is implemented in the
“translation” part in Fig. 1.

In this approach, the mapping from strings to
schedules evoked by the method is not one-to-
one, but many-to-one, as shown in Fig. 2. There-
fore, there is a possibility that it may cause an-
other sort of demerit because the same schedule
can be scanned repeatedly. Paying attention to
this point, this paper introduce a way of rep-
resenting a schedule and translating any string
to a feasible schedule as well. In the following,
a solution method, in which a genetic algorithm
(Goldberg, 1989; Michalewicz, 1996) is adopted as
a meta-heuristic method, is designed.

3.1 Representation of an Individual

An individual (genotype) of genetic algorithms is
represented as a combination of two sub-strings

Objective functional values

Solution space (feasible schedule)

Search space (assignment & sequence)

Procedure (generating a feasible schedule)

Fig. 2. Search space and solution space. The mapping from
strings in the search spaces to schedules in the solution
space is not one-to-one, but one-to-many.

(α and β) with the length of the number of oper-
ations, and each sub-string is formed as follows :

αk : the machine to which Ok is assigned,
βk : the priority of Ok,

where Ok is assigned to Mαk
by referring to αk (to

fix the values of x of the MP formula in Section
2.2, and then, on each machine, the operations are
sequenced in the non-decreasing order of βk (to fix
the values of y). The ranges of α and β are

αk ∈ {1, 2, · · · , m} , (22)

βk ∈ {0, 1, · · · , B} , (23)

where B is a positive constant.

3.2 Generating a Schedule

According to the property of the problem de-
scribed in the beginning of this section, a proce-
dure to generate a schedule (phenotype) according
to the assignment (determined by referring to α)
and the sequences (determined by β) is designed,
where the start time of each operation is deter-
mined in such a way that any operation should be
processed as early as possible.

Here, in the procedure, the constraint (16) in the
MP formula is discarded, so that the procedure
should be kept simple and fast. Then, in order
to compensate this issue, in evaluating the sched-
ule, the degree of infeasibleness with respect to
this constraint is added to the original objective
value as a penalty. That is, the constraint (16)
is relaxed, and the following augmented objective
function :

z′ = w1 z1 + w2 z2 + w3 z3 (24)

is considered, where

z3 =
n∑

j=1

nj∑
k=nj−1+2

max
{
0, tSk − (

tFk−1 + s4
k−1

)}



(25)
and the weight w3 is also non-negative.

3.3 Calculation of a Fitness

As introduced in the following, since the tourna-
ment selection is adopted in our genetic algorithm
approach, the augmented objective value z ′ of (24)
is directly used as the fitness value f .

3.4 Genetic Operators

Three kinds of genetic operators are implemented.

(a) Crossover : Two individuals are paired ran-
domly in a population, the crossing sites (the
number of crossing sites nc is prescribed)
are selected randomly, and with a prescribed
probability pc some genes are exchanged be-
tween the paired individuals.

(b) Mutation : One locus is selected randomly,
and then the gene is changed to another gene
with a prescribed probability pm.

(c) Selection : The tournament selection method
(Michalewicz, 1996) is adopted. A prefixed
number (the tournament size ns) of individ-
uals are randomly selected, and the best one
from this set of individuals survives to the
next generation. This process is repeated np

(population size) number of times.

4. COMPUTATIONAL EXAMPLES

Three kinds of examples :

(a) E1 : 12 machines, 6 jobs and 18 operations,
(b) E2 : 6 machines, 6 jobs and 18 operations,
(c) E3 : 12 machines, 9 jobs and 45 operations,

have been prepared and solved by using the ge-
netic algorithm (GA) introduced in Section 3,
where the setting of the parameters are shown in
Table 1 and Table 2. To each example and each
setting, 100 trials have been executed by changing
the initial conditions, and then the best schedule
is selected for each trial.

In Table 3, the objective function values of the ob-
tained schedules are summarized, where the mini-
mum, the maximum, the average and the standard
deviation values of the best schedules are shown.
In the table, the results by using the commer-
cial package of mathematical programming solvers
(Nuopt 4.0) are also shown. Furthermore, the
average computational time (i.e., the CPU time
when using a Pentium III 933MHz computer) re-
quired for each method is summarized in Table 4.

From these tables, the followings can be observed :

Table 1 Setting of Parameters

Weights w (0, 0.5, 0.5), (0.5, 0, 0.5), (0.25, 0.25, 0.5)

Constant M 289 (E1), 649 (E2), 901 (E3)

Table 2 Setting of GA Parameters

Population size np 200
Number of generations ng 100
Crossover cites nc 1
Crossover rate pc 0.6
Mutation rate pm 0.01 / individual
Tournament size ns 2

Maximum priority B 25

(a) To all examples E1, E2 and E3, rather good
schedules are obtained sufficiently fast by
applying our genetic algorithm.

(b) However, the stableness of finding the best
schedule is rather poor. This issue may be
overcome by setting np (population size)
and/or ng (number of generations) larger.

(c) By changing the weight coefficients w of the
(augmented) objective function, the obtained
schedules are preferably varied.

As a result of above observations, the proposed
approach is effective for finding good (possibly,
cloth to the optimal) schedules within preferable
computational time, and has a potential of appli-
cability to larger-size practical examples.

5. CONCLUSION

In this paper, a class of flexible shop scheduling
problems is studied, and a method of forming a
mathematical programming model is proposed.
Then, in order to seek the schedules close to
the optimal one within preferable computational
time, a genetic algorithm approach based on the
formula is designed. From computational experi-
ments, we assured the usefulness of our proposal.

Furthermore, the following issues have been left
to be investigated :

(a) To examine the effectiveness of our method
especially in comparison with heuristic meth-
ods using dispatching rules,

(b) To investigate the applicability of our ap-
proach to larger-size practical examples,

(c) To explore possibility and also stableness of
finding better schedules (e.g., by applying
or combining other meta-heuristics such as
simulated annealing and tabu search).
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