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Abstract: A nonsmooth controller design procedure for the regulation of a class of m-
DOF mechanical manipulators with viscous and Coulomb friction is presented. Based on an
invariance principle developed elsewhere, a discontinuous controller that uses only position
measurement feedback is proposed. It is proved that the origin of the closed-loop system is
globally and asymptotically stable. A discontinuous observer is also proposed to estimate
the velocity and improve the performance of the controlled system. This kind of nonsmooth
observer is important to achieve the global asymptotic stability of the closed-loop system.
It is shown that the combination controller-observer can tolerate uncertainty in the friction
coefficients if a bound on these parameters is known. Copyright 2000 IFAC
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1. INTRODUCTION

There are many important systems with nonsmooth
dynamics. Among others, we can mention systems
with Coulomb friction, contact interactions, variable
structure systems, or systems where the control in-
puts are discontinuous. An important contribution for
the analysis of these systems was given by Filippov
(Filippov, 1988), who developed a solution concept
for differential equations with Lebesgue measurable
right-hand sides. The Lyapunov functions considered
to study the stability of equilibria were smooth. Other
authors extended the analysis using nonsmooth Lip-
schitz continuous Lyapunov functions, requiring that
the trajectories were absolutely continuous (Shevitz
and Paden, 1994). This allowed to prove the stabil-
ity of equilibria of some nonsmooth systems using
nonsmooth Lyapunov functions, which are natural for
nonsmooth dynamics.

The control of discontinuous nonlinear systems is a
nontrivial task. It is known that on a compact simply-
connected manifold, a nonlinear system cannot be
globally stabilized by a continuous, static feedback
(Nikitin, 1999). Taking into account this fact, in this
paper we propose a nonsmooth controller design pro-

cedure for the regulation of a class of m-DOF ro-
botic manipulators with viscous and Coulomb fric-
tion terms. The proposed procedure is based on an
invariance principle developed elsewhere (Alvarez et
al., 2000), restricted to a class of discontinuous dy-
namic systems whose trajectories are unambiguously
defined (in the sense of Filippov). The proposed dis-
continuous controller uses only position measurement
feedback. We prove that the origin of the closed-loop
system is globally and asymptotically stable.

A discontinuous observer is also proposed to estimate
the velocity and improve the performance of the con-
trolled system. This kind of nonsmooth observer is im-
portant to achieve the global asymptotic stability of the
closed-loop system. We also show that the controller-
observer structure can tolerate uncertainty in the fric-
tion coefficients if a bound on these parameters is
known. We illustrate the technique with numerical
simulations of 1 and 2-DOF robotic manipulators.

2. DISCONTINUOUS DYNAMIC SYSTEMS

We consider discontinuous dynamic systems governed
by differential equations of the form



&= f(z), @)
where f : IR" — IR" is a piecewise smooth function
having discontinuities on a set A/ € IR" of measure
zero. A solution of (1) is defined in the Filippov sense
(Filippov, 1988).

Definition 1. Foreach z € IR", let F(z) be the small-
est convex closed set containing all the limit values of
f(z*) for z* € R™ \ N, z* — z. An absolutely
continuous function x, defined on an interval I, is a
solution of (1) if the differential inclusion & € F(x)
holds for x(t) almost everywhere on I.

Because system (1) may have a non-unique solution
for arbitrary initial conditions (Filippov, 1988), we
must restrict our analysis to systems having at least
right-uniqueness solutions. For that, let us assume
that there exists a positive definite continuous func-
tion V' (z), nonincreasing along the trajectories of (1).
Then, all the trajectories of (1) are bounded and, in
accordance with (Filippov, 1988), they are globally
defined in the direction of increasing ¢. Relating to
continuous dynamic systems, the invariance princi-
ple ensures the convergence of the state trajectories
x(t) to the largest invariant subset 2 of the manifold
M={zxeR":DV(x(t)) =0}, where

DV (a(t) = T o 3 [V(a(t 4+ 1)) — V(x(t)]
@)
is a fixed Dini derivative along the trajectories of the
system. In general, the invariance principle does not
admit an extension to dynamic systems governed by
differential inclusions, and particularly to discontin-
uous dynamic systems like (1), possibly due to their

ambiguous behavior (see (Michel and Wang, 1995)).

We confine our analysis to systems like (1) for which
right uniqueness of solutions holds; that is, we as-
sume that any solution of (1) is uniquely continuable
to the right. Some sufficient right uniqueness con-
ditions for solutions of system (1) can be found in
(Filippov, 1988), where the continuous dependence of
the solutions on their initial data is also shown.

Supose that there exists a positive definite function
V() satisfying a Lipschitz condition in a neighbor-
hood of any « € IR™. Then, for any solution of (1),
V (z(t)) is absolutely continuous, and

V) = ZVa +him)| o)

almost everywhere (Filippov, 1988). The next result is
proved in (Alvarez et al., 2000).

Theorem 2. Suppose there exists a positive definite,
Lipschitz-continuous function V'(z) such that

V(a(t) <0 @
almost everywhere. Let {2 be the largest invariant

subset of the manifold M where the strict equality
holds, and denote V(z) — oo as dist(z, Q) — .

Then all the trajectories x(¢) of (1) converge to (2, that
is, limy_, o dist(x(t), Q) = 0.

The next propositions allow one to simplify the verifi-
cation of the conditions of this Theorem.

Proposition 3. Condition (4) of Theorem 2 is fulfilled
if (3) is nonpositive at the points of the set \j- where
the gradient VV of the function V(x) does not exist
and in the continuity domains of the function f(x)
where (3) is expressed in the standard form

V(z)=VV(z)- f(z), zeR"\ WUNy). (5)

Proposition 4. Let no trajectory of (1) stays in Ny, U
{0} within a finite time interval. Then condition (4)
of Theorem 2 is fulfilled almost everywhere if (5) is
nonpositive for all z € R™ \ (N UNy).

We summarize now the main concepts related to so-
lutions of differential equations with discontinuous
right-hand sides presented in (Filippov, 1988), which
play an important role in the design of the proposed
controllers.

Suppose that the domain G where f is smooth
can be decomposed into the union of open, disjoint
sets G;, G = U._,G,, such that N defines the
boundary between the sets GG;. We consider the case
where A consists of a finite number of (n — 1)-
dimensional surfaces, denoted by .S;. In this case the
trajectories of system (1) either cross the surfaces or
stay in there, displaying the so-called sliding motion
(Filippov, 1988).

For each point € G we denote by Fy(x) the simplest
closed convex set containing all the limit values of
f(z*) for z* ¢ N, z* — =z. A solution of (1) is a
solution of the differential inclusion

i€ Fy(x). (6)
Forz ¢ N, Fo(z) = {f(x)}, so the solution satisfies
(1) in the usual sense. When x € N, Fy(zx) is a
segment, a connected polygon, or a polyedhre with
vertices f;(z), ¢ < k, where

filx) = lim

cdm,  f). @)
Let us consider the case where f is discontinuous in a
smooth surface .S, defined by ¢(x) = 0. This surface
divides the domain into the sets G*. We define the
vector fields f* as f*(2) = lim,«cgt o0 f (2).
Therefore, the set Fy(x) is a linear segment joining
the final points of vectors f¥(x) starting at x. If this
segment does not intersect the tangent plan P to the
surface S at the point x, then the trajectories cross
the surface; otherwise denote as f°(z) the intersection
of this segment with the surface. If f* # f*, then a
sliding motion is generated, given by

&= f(x). ®)
A function z(t) satisfying (8) is a solution of (1). A
way to find if this situation occurs is given next.



Let us consider the system

&= f(z,ug (2),...,ur (), 9)

where z € R", f (z,uq,...,u,) is continuous in all
its arguments, each scalar function w;(z),i = 1,...,r
is discontinuous only in a smooth surface S; defined
by ¢, (z) = 0. For each point x of discontinuity of the
function u; a closed set U; () must be given, defining
a set of possible values of u;. For i # j it is supposed
that u; and u; vary independently in the sets U; («) and
U;(z), respectively. U;(x) must contain all the limit
points for any sequence with the form vy, € U; (xy),
where x, — x, k = 1,2,.... Let us define the set
F 1 (I’ ) as

Fi(x) = f(z,U1 (2),...,U. (). (10)

Therefore, a solution of (9) is a solution of the differ-
ential inclusion

i€ (). (11)
Let us consider now the system
= f(x,u]?(z),...,ui? (2), umi1(z),. .., u.(2)),
(12)
where ui?, ..., u4, called equivalent controls, are

such that the vector field f in (12) is tangent to the
surfaces S1, ..., S, (1 < m < r) and ui’(z) €
[u; (x),u; ()], where ui () are limit values of u;

in both sides of the surface S;, ¢ = 1,...,m. The

functions u;?(z), i = 1, ...,m, are determined by the
equations

V(@) faul? .. upd tmst, .o up) =0
for i = 1,...,m. A solution is an absolutely con-

tinuous function that, out of the surfaces S; satisfies
(9), and on the surfaces and their intersections satisfies
(12) (Filippov, 1988).

We consider systems such that f is linearinuy, . . ., u,,
and where all the surfaces S; are different and such
that at the intersection points the normal vectors to
these surfaces are linearly independent. Therefore,
the sets Iy and F; and the two definitions coincide
(Filippov, 1988).

Now consider the system (9) such that the all the
vectors p; = Vi, (x) are linearly independent for all
x € S. Therefore, near the surfaces Sq,...,S,, and
their intersection S, (9) has the form

& = folz) + Bo(2)u(z), (13)

where w is the vector (ug, ... ,um)T, 1<m<r,and
fo and the (n x m)-matrix By are clearly identified.

The other functions %, 1, ..., u, are continuous in
S.

Let us consider the matrix G such that its rows are
given by p; = V,(x). Therefore, if GBj is not sin-
gular, the motion along the intersection of Sy, . . . , Sy,
is given by Gi = G (fy + Bou?) = 0; then

u(z) = = [G(2)Bo(w)] " Gla) folz).  (14)

If each component of the vector ©“? satisfies

3

u; (z) <ufl(z) <uf(z), (i=1,...m), (15)
{or uf (z) < uj?(x) < ul_(x)} ,

then a sliding motion is produced along S and the
velocity vector of this motion is given by

& = fo(z) — Bo(x) [G(x)Bo ()] G(x) fo(x).
(16)
An important fact is that, if at least one inequality of
(15) is not satisfied, then there is not (sliding) motion
along the surface S.

3. DISCONTINUOUS CONTROL OF M-DOF
ROBOTIC MANIPULATORS

Let us consider an m-DOF robotic manipulator, de-
scribed by the classical equation

M(q)i+Clq,4)g+9(q) + F(¢g) =7, (17)

where ¢ € IR™ is the position, 7 € IR™ is the control
input, M = M T > 0, C, and g are matrices with
smooth inputs and proper dimensions, denoting the
classical, physical meaning (Spong and Vidyasagar,
1989). Furthermore, the friction force

F(4) = Fyq+ F.sgn(q) (18)

is composed by viscous and Coulomb friction terms,
sgn (§) = (sgn(d1),.--,sgn(dn))’, and F,, F. are
diagonal, positive definite matrices F,, = diag { f,, } .1,
F. = diag{f.,};~,. Note that ¢"F (§) > 0 for all
q#0.

Denote by ¢ = q — q4 the position error, where gy is
a constant, desired position. System (17) can then be
expressed as

<§) B (M_l(q) [T—C(q,qd)d—g(q) —qu'])
* (M-Ol (q)> [~ Fesgn (4)] (19)

where ¢ = ¢ + qq.

Suppose that the system is not controlled, that is,
7 = 0. Then system (19) has the form & = f(z) +
B(x)u(x), where z = (¢%,¢")T and f, B, and u are
clearly identified. The functions u; = — f,,sgn(q;) are
discontinuous on the surfaces S; defined by ¢, (z) =
g =0, =1,...,m. Then p; = Vy,(z) = em+i
where e; = (0,...,1,0,...,0)T, with the “1” placed
at the j-th position, and {p1,...,pm} is a linearly
independent set of vectors in the intersection surface
S of the discontinuity surfaces S, ..., S,,. It is then
possible to obtain an expression for u°9.

Let us consider the positive definite function

V(a.4)=Ula) - Ulan) + 3@ M@, (20)

where U(q) is the potential energy of (17) such that
g(q) = 0U(q)/0q. The derivative V" along the trajec-
tories of the discontinuous system is given by



V(d.d) = q'Taa—[q] T O )i — 9(a) - F(@)]
+5d" M (a)d

Since ¢7 (M /2 — C) ¢ = 0 (Spong and Vidyasagar,
1989), then V(§,q) = —¢" F(g), which is negative

for any ¢ # 0 and V(0,0) = 0, which just defines the
discontinuity surfaces S;. We now have the conditions
to apply theorem 2.

To find the largest invariant set contained in M =
{@d)er™: V(@) =0} = {(@0) e R}
we use the equivalent control approach. From (14) and
(19) we find that

utl = g(q). @n

Now from (15) and (21) we conclude that there will
be a sliding motion in the intersection S of the discon-
tinuity surfaces S; if all the inequalities

are satisfied. In this case the largest invariant set is
given by Q = {(¢,0) € R*"} and the system tra-
jectories converge to this surface.

Example 5. Let us consider the simple pendulum

(g) - (—sinqq— qu') + (?) [—fesgn (¢)]

From (21-22), the largest invariant set contained in
M is given by @ = {(¢,¢) e R*: =0} = M
if |sin(¢ + qq)] < fe. In this case, the trajectories
converge to 2, if not, then Q = {(0, 0) }, which is then
an asymptotically stable equilibrium point. Figure 1
shows the phase portraits for f, = 0.5, and some
values of f..
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Fig. 1. Phase portraits of the uncontrolled pendulum
with viscous and Coulomb friction. (a) f. = 0.5.

(b) fc =2.

Now consider a control law with the form

7 = keg(q) — OV1(9),

where k;, € {0,1} is a constant used to take or
not into account the gravity compensation, V7 is a

positive definite scalar function, and 0 denotes the
generalized gradient. Note that this is a static control
law that depends only on the position. Then system
(17) acquires the form

q) _ q
(d) (M_l [(kg —1)g — 0W1 —CQ—FUQ]>
0 .
+ (Ml(q) ) [_FCSgn (Q)] ’ (23)
A candidate Lyapunov function can be given by

V = Vi@ + (1— ko) [U(0) — Ulaa)] + ~d"M(g)d

2
whose derivative V/ along the system trajectories is
(remember that ¢ = OU) V = —¢TF¢ < 0, for

which we can apply theorem 2. Because the system
converges to the set {(¢,0) € IR*™}, we must find
the largest invariant set in there. For system (23) the
equivalent control is u®? = (1 — kg4)g(q) + V1 (q).
Therefore, there exists a sliding motion in this set if

(1= kg)gi(q) + 0V, (Q)] < fe,

for all ¢ = 1,...m. In this case the system will
converge to a point (¢, 0). If these inequalities are not
satisfied, then the system will converge to (0, 0).
Example 6. Suppose that V1(q) = >, ke, |q;], and
that there is no gravity compensation, that is, kg, = 0.
Therefore, the system will converge to the origin if
lgi(q) + ke,sgn (¢;)| > fe,, which is satisfied depend-
ing on the gravity term g. In this case the control input
has the form 7 = — K sgn (). Figure 2 shows some
time responses for this case (solid lines).
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Fig. 2. Typical response of a 2-DOF robot
with  Coulomb friction controlled with
7 = —K.sgn(g) (solid lines) and with gravity
compensation 7 = g¢(q) — K sgn(q) (dashed
lines).

Now consider a gravity term in the control (k, = 1).
The origin will be asymptotically stable if, for some i,
ke, > fe, is satisfied. The same figure 2 shows some
responses obtained for this case (dashed lines).



Other choices of V7 can give a better response, for
example Vi = Y7 ke, |Gi] +q" Kpd + [ §TKrqadt,
where K, K7 > 0.

4. A DISCONTINUOUS OBSERVER

Although the control law proposed in the previous sec-
tion can stabilize the system around a point (g4,0), a
better performance can be attained using also velocity
feedback. However, if this variable is not available, an
observer must be included. In this section we propose
an observer for robot manipulators with Coulomb fric-
tion, and prove that the connection controller-observer
leads to an asymptotically stable behavior of the sys-
tem.

Let us suppose that the only measured variable is the
position, that is, y = ¢ € IR™, and consider the
following model,

#1=12& + hpj,
By =M (y)[-Cly, #1)1 — g(y) —
+u+ Hpjj + Keesgn()],
9=, (24)
where hp > 0 is a constant, Hp > 0 is a matrix,
K.. = diag{kec, };~, > 0 is a diagonal matrix, and

7 =y — 1§ = q— & is the output estimation error,
whose dynamics are given by

F(i1)

My +Cly,9)y + Foy = —Hpj — hpMy (25
~Cly, ) — F. [sen(@) — sen(i)| — Keesen(7),
where we have used the fact that C(z, y)z = C(z, 2)y

(Spong and Vidyasagar, 1989).

Letz = (¢7, 97,57, 5™)T be the state of the overall
system (plant + observer). Then this system is de-
scribed by

q=1,
j=M"1(y) [-Cly,9)y — 9(y) — F(§) +ul,
J=1, (26)
)=M"1)[-Cly, 1) — Cy, )i — Fuij
—Hpjj — hpM(y)y — Fesgn(y)
+F.sgn(y)) — Keesgn(j)].

Let us consider the control law

u=g(q) — Kesgn(q) — Kpq— Kay, (27

where K, = diag {k., },~, > 0 is a diagonal matrix
such that K, > F, and K,, = diag {kp,}]~;, > 0
is also a diagonal matrix. Let us also suppose that the
friction coefficients F,, and F| are not exactly known,
such that in the observer we use an approximation F,,
and F,,. Then the overall controlled system is given
by

=1,

=M1 () [-C(y, 1)y — F () — Kesgn(q)
—Kpq— Ka(y — )], (28)

g :5

=M y)[-C(y,9)y — Cy, )y — Hpj
—hpM(y)§ — F(§) + Fa(y) — Keesgn()),

where F, (A) = Fmgj—kFcasgn(;) Fjo = diag { fja, }i1s
J € {“v", “c”}, are diagonal matrices such that Fj, >
F;. A candldate Lyapunov function for this system is

V(2) = " Kesen(@) + 7" Keosn(§) + 527 Bla),

(29)
where B(q) = diag {K,, M(y), Hp, M(y)} > 0Oisa
block-diagonal matrix. It is not difficult to show that
the time-derivative of V' along the trajectories of the
overall system satisfies

V<=7 [F(d) + Ka(y — §)] — 5" [F(@) - Fa(3)]
—hog" M)+ ko (ldll + 5D 15])5. G0

where k, = maxgemm Y e, [|Ck(q)]l, /2, the ele-
ments of matrices C}, being given by

OM;;, OM;, OM;
Crij(Q) = =+ -
g, dg; 9q;
for i,j,k = 1,...,m. M;; are the components of

matrix M (Spong and Vidyasagar, 1989). We also
used the fact that 7 F,. [sgn(g)) — sgn((j)} <0.
The right side of (30) is non-positive if
fcai
2 )
(Ezs + Kd)?\/[
APy,

f(!i >

(FU + Kd)m >

hDMm
kq

where A,,(ys) is the minimum (maximum) eigenvalue
of matrix A. An analysis similar to those presented in
the previous sections leads to conclude that the point
(4,9,9,%) = 0 is a global and asymptotically stable
equilibrium point of this system. Figure 3 shows a typ-
ical response obtained for a 2-DOF robot manipulator
controlled with (27) and using the observed proposed
above with a mismatch of about +20% of the nominal
values between the model and the observer parameters
(dashed lines). This figure also shows the results when
the exact velocity is used in the controller (solid lines).
Note that there is no significant difference between the
two responses. Finally, figure 4 shows the response of
the same system and the same control law with the
observer included (K; > 0, solid lines) and without
the estimation of velocity (K; = 0, dashed lines).
Observe that the closed-loop system displays a better
response with the observer. However, in both cases the
origin is asymptotically stabilized.
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Fig. 3. Response with the exact velocity (solid lines)
and with the observed velocity (dashed lines) of a
2-DOF robot with Coulomb friction fedback with
the control u = g(q) — Kesgn(q) — KpG — Kai.
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Fig. 4. Response of a 2-DOF robot with Coulomb
friction, fedback with the control law u = g(q) —
K.sgn(§) — K,q — Kqyj, with the observer in-
cluded (Ky > 0, solid lines) and without the
observer (Ky = 0, dashed lines).

5. CONCLUSIONS

Several discontinuous controllers for the regulation
of robotic manipulators with Coulomb friction have
been proposed. The design is based on the theory of
discontinuous differential equations developed by Fil-
ippov and an invariance principle recently established.
The proposed controllers make use only of position
measurements, and to improve the performance of the
closed-loop system a discontinuous observer has also
been developed. The stability of the overall structure
has been shown, as well as its robustness with respect
to parameter mismatches. Like all the discontinuous
controllers, those presented here exhibit chattering in
the steady state. This behavior can be removed by ap-
proximating the sign functions with some continuous
functions at the price of having a steady position error.
This smoothing action can be made on the control

signal, but it is not needed in the observer if this model
is implemented in a digital computer.

Acknowledgment This work has been partially sup-
ported by the CONACYT, Mexico, under grant 31166-
A.

6. REFERENCES

Alvarez, J., 1. Orlov and L. Acho (2000). An invari-
ance principle for discontinuous dynamic sys-
tems with application to a coulomb friction os-
cillator. Trans. of the ASME, Journal of Dynamic
Systems, Measurement, and Control 122, 687—
690.

Filippov, A.F. (1988). Differential Equations with Dis-
continuous Right-Hand Sides. Kluwer Academic
Publishers. Dordrecht.

Michel, A.N. and K. Wang (1995). Qualitative The-
ory of Dynamical Systems, the Role of Stability
Preserving Mappings. Marcel Dekker, Inc.. New
York.

Nikitin, S. (1999). Piecewise-constant stabilization of
nonlinear systems. Proc. 38th Conf. on Dec. and
Ctrl. pp. 1308-1313.

Shevitz, D. and B. Paden (1994). Lyapunov stability
theory of nonsmooth systems. IEEE Tr. on Auto-
matic Ctrl. 39, 1910-1914.

Spong, M.W. and M. Vidyasagar (1989). Robot Dy-
namics and Control. John Wiley & Sons. New
York.



