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Abstract Since accurate models of nonlinear systems are difficult to obtain a-priori in 
practice, it is necessary to obtain these models from input-output data. As neurofuzzy 
networks can approximate nonlinear functions with arbitrary accuracy, and they can be 
trained from data, they are used here to model nonlinear systems. It is shown that the 
residuals generated from the model approximated by neurofuzzy networks is Guassian 
distributed, and that the asymptotic local approach can be applied to detect fault. Fault is 
detected when the residuals computed from the model exceeded a threshold determined 
by the χ2-test for a given false alarm probability. The proposed fault detection procedure 
is demonstrated by an example. 
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1. INTRODUCTION 
Fault diagnosis is crucial in monitoring industrial 
process, as demonstrated by the number of survey 
papers (Willsky, 1976, Gertler, 1988, Basseville, 
1988, Frank, 1990, Isermann, 1993) and books 
(Patton et al 1989, Chen and Patton, 1999). A 
popular approach in fault detection is the model-
based fault diagnosis methods derived based on the 
assumption that an accurate model of the system is 
available. By comparing the estimated output of the 
model and the actual output, faults are detected. This 
simple approach is adequate for large faults, but is 
difficult to detect smaller faults. To improve the 
reliability of fault detecting, asymptotic local 
approach is proposed such that fault detection for 
systems with known structure is reduced to 
statistical hypothesis test  (Zhang, et al., 1998, 
Basseville, 1988). 
 
However, model-based methods cannot be applied 
to systems that cannot be expressed explicitly by 
mathematical models. To overcome this difficulty, it 
is necessary to find a “universal” approximate 

model that can be used to represent most systems 
with arbitrary accuracy. Neural networks are such 
powerful tools. In input-output systems, neural 
networks are first trained to model faults in the 
system, and are then used to detect faults later 
(Patton, et al., 1994).  
 
Wang et al. (2001) proposed to model the nonlinear 
system using a neurofuzzy network. The asymptotic 
local approach is then applied to detect fault from 
residuals generated from the neurofuzzy network. 
However, the threshold to detect fault has to be 
chosen empirically. In this paper, it is shown that the 
test is reduced to the χ2-test, hence the threshold can 
be chosen for a given probability on the false alarm. 

 
The paper is organized as follows. In Section 2, the 
model for different types of faults is presented, and 
the derivation of fault diagnosis of systems modeled 
by neurofuzzy networks using the asymptotic local 
approach is presented in Section 3. The proposed 
fault diagnosis procedure is demonstrated by a 
simulation example involving a nonlinear system. 
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2. NONLINEAR SYTEMS WITH FAULTS 
 
Consider a general discrete single input single 
output (SISO) nonlinear system, 
 y(t) = f(y(t-1), …,y(t-ny), u(t-d-1), …,u(t-d-nu)) (1) 
where u and y are the measured input and output, ny 
and nu are the maximum lags in the output and 
input, and d is the time delay, and f(.) is an unknown 
smooth nonlinear function. Denote the input and the 
output by x(t),  
 x(t) = [x1(t)  x2(t)  …  xn(t)]T 

        = [y(t-1)  …  y(t-ny)  u(t-d-1)  … u(t-d-nu)]T 

where n = ny + ny is the dimension of x. Neural 
networks with input x(t) and output y(t) are 
commonly used to approximate the nonlinear system 
(1). Neurofuzzy networks are used here to 
approximate f(.), as they not only can approximate 
nonlinear functions with arbitrary accuracy, they can 
also be trained from data using linear parameter 
estimation techniques. Let there exist a neurofuzzy 
network that approximates closely f(.), as given 
below (Brown and Harris, 1994), 

 )()()( 00 texWty T += σ                                     (2) 

where W0 is the weight vector, σ0(x) is the 
transformed input obtained by tensor product of the 
basis functions chosen as the membership functions 
of the fuzzy sets of x and e(t) is a white noise with a 
variance of λ. As model (2) is not necessarily known 
a-priori, it is assumed that y(t) is approximated by 

 )()()( txWty T ξσ +=                                      (3) 

where W is the weight vector, σ(t) is the 
transformed input with a compatible dimension, and 
ξ(t) is the sum of the modeling error and e(t). If the 
dimensions of W is identical to the dimension of W  
then (3) is identical to (2). The output of the trained 
network (3) )(ˆ ty is, 

 )(ˆ)(ˆ xWty Tσ=                                                 (4) 

where Ŵ is the estimated weight, and )(xσ  is the 
activation function vector. From (2) to (4), the 
modeling error ε(t) is  
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where )()()( 00 xWxWx TT σσ −=Ψ  and 

WWW ˆ~ −= . The modeling error given in (5) 
consists of three components: )(te , the system noise, 
Ψ(x), the modeling error for approximating the best 
neural network W0, and )(~ xWσ , the estimation error 
of W . If component fault or actuator fault occurs, 
the system becomes 
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where the subscript “ f ” denotes a system with 
faults. The output of the network when fault occurs 
is  

 )(ˆ)(ˆ f
T

f xWty σ=                                          (7) 

The residual now becomes  
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where 000 WWW f −=
)

. For sensor fault, the output 
of the system (2) is now 

)()()()()()()( 00 tetyxWtetytyty T
f +∆+=+∆+= σ     (9) 

where )(ky∆  arises from the sensor fault. As the 
neural network has not been updated, its output is 
still given by (7). From (5), (6) and (2), the residual 
is  
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   (10) 
It is shown in Wang et al. (2001) that it is difficult 
to detect small faults from the residual given by (5) 
or (10).  
 
 

3. FAULT DIAGNOSIS BASED ON 
ASYMPTOTIC LOCAL APPROACH 

 
The asymptotic local approach is a statistical 
technique that transforms a fault diagnosis problem 
into an asymptotically equivalent but simpler 
problem involving the detection of a change in the 
mean of a Gaussian process. It is shown by Zhang et 
al. (1998) that the approach can be applied to detect 
small and incipient faults in a class of nonlinear 
systems with known internal structure. In Wang et 
al. (2001), the method is extended to systems with 
unknown internal structure, modeled by neural 
networks. The asymptotic local approach is then 
used to develop the fault diagnosis technique, as 
presented below. A method to determine the 
threshold based on the χ2-test is also presented.  
 
3.1 Residual generation 
Rewritten (2),  
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where [ ]T
p xxxx )()()()( 00201 σσσσ L= , 

[ ]p
T wwwW 002010 L= , and k  is the sample 

number. Let [ ]Tm xxxx )()()()( 21 σσσσ L=  

and [ ]TmwwwW L21= , where m  is the 
number of weights. For simplicity, let m = p. Then 

0W  in (11) can be replaced by W  and )(0 xσ  by 

)(xσ . Denote the estimate of W  by Ŵ . The output 
of the trained network is 
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If m is chosen greater than p, then the estimated 
neural network is over-parameterized, but under-
parameterized otherwise. Over-parameterization 
increases the computation burden, whilst under-
parameterization increases the modeling errors. It is 
shown in the example presented in the next section 
that it is still possible to detect fault, though it may 
take longer. 

Gradient descent algorithm is used to train the 
neural network (12), though other training 
algorithms can be used. At the kth  training period, 

k
iŵ  is given by  
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From equation (12), )(
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equation (13) becomes 
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where ))(ˆ)()(()( kykyxkh ii −=σ  is the residual and 
η is the learning rate. Define the residual vector, 

[ ]Tm khkhkhkH )()()()( 21 L= . After the 
network is trained using N input and output data, the 
residuals H(k) are computed from the network. In 
the asymptotic local approach, the cumulative sum 
of the residual )ˆ(WDM  computed for a window of 

M samples is normalized by M , as given below 
(Benveniste et al, 1987). 
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Since the modeling error Ψ(x) given by (5) is zero 
from the assumption that W0 is replaced by W  and 

)(0 xσ  by σ(x), Ψ(x) is ignored in the following 

analysis. The residual )ˆ(WDM  can now be 
approximated by, 
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 It is well known that Ŵ , the estimate of W , is 
asymptotically normally distributed and approaches 
to W  as M  tends to infinity (Caines, 1988). 
Consequently, the first term on the right hand side 
of equation (16) is Gaussian distributed with zero 
mean. Since e(k) is also Gaussian distributed, hence 

)ˆ(WDM  is Gaussian distributed with zero mean. 
When there is a component or an actuator fault, 

the system is now given by (6). Denote the optimal 
weight vector of the system with fault by fW , and 

caW∆  the change in the weight arising from the 
component or the actuator fault, then 
 caf WWW ∆=−                                (17) 

From (16) and (17), )ˆ(WDM  becomes 
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Since caW∆  is non-zero, hence )ˆ(WDM  is also 
non-zero, irrespective of a component or an actuator 
fault. For a sensor fault, the system is given by (9), 
and )ˆ(WDM  is  
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Similarly, )ˆ(WDM  is also non-zero if there is a 
sensor fault. An online fault detection scheme is 
derived in the following section using this result. 
 
3.2 On-line fault detection procedure 

After neurofuzzy network is trained off-line, the 
proposed fault detection procedure is given below. 



 

 

Step 1 Select M , the window for computing the 
cumulative sum of residuals. 

Step 2 Compute the mean of the residuals 
generated from the trained network as described 
below. This is a necessary step as )(xΨ  is 
ignored, and also the mean of the residuals 
calculated from a finite number of samples may 
not be exactly zero. 
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Step 3 At the kth sampling period, compute the 
cumulative sum of residuals 
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Because k
MD  is a vector, it is necessary to 

normalize the cumulative sum of residuals for 
detecting the fault, 

 k
M
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k
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where )(kR  is the covariance matrix of )(kH . 

Step 4 Fault is detected, if λ>k
MS , where λ is the 

threshold. The selection of λ is discussed in the 
next subsection. 

Step 5 Repeat Steps 3 and 4 for another sample if 
no fault has been detected. 

 
3.3 Determination of threshold λ 
The proposed procedure depends on the choice of λ. 
It is shown previously that for large k, fault 
detection is equivalent to the detection of a change 
in the mean of a Gaussian vector. It is well known 
that the detection of the change in the mean of a 
Gaussian vector can be formulated as a χ2-test 
(Benveniste et al., 1987). Therefore, k

MS  given by 
(21) is χ2 distributed as M tends to infinity (Caines, 
1988). Therefore, the threshold λ can be chosen 
from the χ2-table for a given false alarm probability 
(Zhang et al., 1998). 
 
When computing the covariance matrix Rc given by 
(21), the following method is used to ensure that it is 
positive definite. Assume that H(k), for k = 1, …, N 
are obtained when the system is under normal 
operating conditions. Divide the sequence H(k) into 
L1 segments of length L2, then an estimate of Rc is 
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sufficiently large L1, Rc is generally positive 
definite, and if L2 is chosen sufficiently large, then 

iLD ,2
 is approximately Gaussian distributed. In 

general, there are a large number of choices of L1 
and L2, such that Rc can be estimated accurately. 
 
It is shown in the previous section that the 
dimension of H(k) is the same as the number of 
weights in the neurofuzzy network. As the 
dimension of the neurofuzzy network, and hence the 
dimension of H(k) can be very large, if too many B-
spline functions are chosen for the network. In this 
case, Rc and hence its inverse are difficult to 
compute,. Therefore, the number of B-spline 
functions in the network should be kept as small as 
possible. Although the modeling error will be 
increased, fault can still be detected, as shown in the 
simulation example given later. 
 
Remark 1: If the inverse of Rc does not exist or is 
difficult to compute, Rc is replaced by the norm 

∑
=

M

i

iH
1

2)(  in normalizing k
MD  (Wang et al., 

2001). However, the χ2-test may not be appropriate 
in determining λ. 
 
 

4. SIMULATION EXAMPLE 
 
The following nonlinear system is simulated. 
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where y(k), u(k), and e(k), are the output, the input 
and the white noise, and a = 2.5, b = 0.3 and c = 0.5. 
The variance of e(k) is 0.22 and the sampling 
interval is 0.05s. The input of the neurofuzzy 
network is: (u(k-1), y(k-1), y(k-2)). Two triangular 
B-spline functions are chosen for each input, giving 
a total of eight weights. Although a small number of 
B-spline functions may lead to larger modeling 
errors, the covariance matrix Rc and its inversion 
can be computed more readily. From (23), 1000 
input and output training data are generated with the 
input u randomly generated within the range of -2 
and 2. After training, the proposed fault detection 
scheme described in Section 3.2 is applied to detect 
the following faults, which occurred separately one 
at time at 30s, (i) af = 2.2, (ii) bf = 0.24, (iii) cf = 
0.45, and (iv) yf(k) = yf(k) – 0.05. Both (i) and (ii) 
represents component faults, (iii), an actuator fault, 
and (iv), a sensor fault. It is assumed the control u is 
given by, u(t) = 1.2 sin(0.05πt). 

 
The residual H(k) is obtained from the trained B-
spline network after 15s. The proposed fault 
detection scheme is applied after the system has 



 

 

settled at t = 50s. For M = 100 (i.e., 5s), k
MS  for 

each fault are shown in Fig.1 (a) to (d), indicating it 
changed after the occurrence of each fault. The 
threshold λ determined from the χ2-table for a 5% 
false alarm rate is 15.5073, as the dimension of H(k) 
is eight. The time for the proposed fault detection 
scheme to detect each fault are 36.35s, 34.5s, 31.5s 
and 34.5s respectively, i.e., over 16 to 21s after each 
fault has occurred. To investigate the effect of M on 
the fault detection results, it is set respectively to 
200 (i.e., 10s) and 300 (i.e., 15s). For lack of space, 
only k

MS  for M = 200 are plotted, as shown in Fig. 2 

(a) to (d). Again, k
MS  changed after the fault has 

occurred. The time required to detect the faults for 
different M  is shown in Table.1, illustrating that for 
large M longer time is required before faults are 
detected. 

 
 

5. CONCLUSIONS 
 
In this paper, a fault detection procedure for 
nonlinear systems based on the asymptotic local 
approach is derived. The system is modeled first by 
a neurofuzzy network, which is trained off-line. 
Residuals are then generated from the neurofuzzy 
network. Faults are detected if the normalized 
cumulative sum of the residuals exceeds a threshold 
determined by the χ2-test for a given false alarm 
probability. The proposed procedure is demonstrated 
by a simulation example. It is also shown in the 
example that it requires longer time to detect the 
fault if M is large.  
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Table 1 Fault detection time with differ

 M =100 M = 200 
af = 2.2 36.35s 39.4s 
bf = 0.24 34.5s 39.45s 

cf = 0.45 31.5s 37.7s 
yf(k) = y(k) –0.05 34.5s 39.45s 
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