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Abstract Since accurate models of nonlinear systems are difficult to obtain a-priori in
practice, it is necessary to obtain these models from input-output data. As neurofuzzy
networks can approximate nonlinear functions with arbitrary accuracy, and they can be
trained from data, they are used here to model nonlinear systems. It is shown that the
residuals generated from the model approximated by neurofuzzy networks is Guassian
distributed, and that the asymptotic local approach can be applied to detect fault. Fault is
detected when the residuals computed from the model exceeded a threshold determined
by the x*-test for a given false alarm probability. The proposed fault detection procedure

is demonstrated by an example.
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1. INTRODUCTION

Fault diagnosis is crucial in monitoring industrial
process, as demonstrated by the number of survey
papers (Willsky, 1976, Gertler, 1988, Basseville,
1988, Frank, 1990, lsermann, 1993) and books
(Patton et al 1989, Chen and Patton, 1999). A
popular approach in fault detection is the model-
based fault diagnosis methods derived based on the
assumption that an accurate model of the system is
available. By comparing the estimated output of the
model and the actual output, faults are detected. This
simple approach is adequate for large faults, but is
difficult to detect smaller faults. To improve the
reliability of fault detecting, asymptotic local
approach is proposed such that fault detection for
systems with known structure is reduced to
statistical hypothesis test (Zhang, et al., 1998,
Basseville, 1988).

However, model-based methods cannot be applied
to systems that cannot be expressed explicitly by
mathematical models. To overcome this difficulty, it
is necessary to find a “universal” approximate

model that can be used to represent most systems
with arbitrary accuracy. Neural networks are such
powerful tools. In input-output systems, neural
networks are first trained to model faults in the
system, and are then used to detect faults later
(Patton, et al., 1994).

Wang et al. (2001) proposed to model the nonlinear
system using a neurofuzzy network. The asymptotic
local approach is then applied to detect fault from
residuals generated from the neurofuzzy network.
However, the threshold to detect fault has to be
chosen empirically. In this paper, it is shown that the
test is reduced to the x*-test, hence the threshold can
be chosen for a given probability on the false alarm.

The paper is organized as follows. In Section 2, the
model for different types of faults is presented, and
the derivation of fault diagnosis of systems modeled
by neurofuzzy networks using the asymptotic local
approach is presented in Section 3. The proposed
fault diagnosis procedure is demonstrated by a
simulation example involving a nonlinear system.



2. NONLINEAR SYTEMSWITH FAULTS

Consider a general discrete single input single
output (SISO) nonlinear system,
y(t) = f(y(t-1), ....y(t-ny), u(t-d-1), ...,u(t-d-n,)) (1)
where u and y are the measured input and output, n,
and n, are the maximum lags in the output and
input, and d is the time delay, and f(.) is an unknown
smooth nonlinear function. Denote the input and the
output by x(t),
X(1) = [Xa(®) %8) - %O

= [y(t-1) ... y(t-n)) u(t-d-1) ... u(t-d-n,)]"
where n = n, + n, is the dimension of x. Neura
networks with input x(t) and output y(t) are
commonly used to approximate the nonlinear system
(). Neurofuzzy networks are used here to
approximate f(.), as they not only can approximate
nonlinear functions with arbitrary accuracy, they can
also be trained from data using linear parameter
estimation techniques. Let there exist a neurofuzzy
network that approximates closely f(.), as given
below (Brown and Harris, 1994),

y(t) =Wy 0, (X) +€(t) )

where W, is the weight vector, ogy(x) is the
transformed input obtained by tensor product of the
basis functions chosen as the membership functions
of the fuzzy sets of x and €(t) is a white noise with a
variance of A. Asmodel (2) is not necessarily known
a-priori, it isassumed that y(t) is approximated by

y@t) =W o(x) +& (1) 3

where W is the weight vector, oft) is the
transformed input with a compatible dimension, and
&(t) is the sum of the modeling error and e(t). If the

dimensions of Wisidentical to the dimension of W
then (3) isidentical to (2). The output of the trained
network (3) y(t) is,

(1) =W (x) (4)

where W is the estimated weight, and o(x) is the
activation function vector. From (2) to (4), the
modeling error &(t) is
£(t) =y(t) ~Y(O) =W, 0,() ~WTo(x) +et)
=W 0, (x) -WTa(x) +WT -WT)o(x) +et) (5)
=Y(x) +VVa(x) +e(t)
W(x) =W, 0,(x) -W o (x) and
W =W -W. The modeling error given in (5)
consists of three components: e(t) , the system noise,

Y(x), the modeling error for approximating the best
neural network W, and Wo (), the estimation error

where

of W . If component fault or actuator fault occurs,
the system becomes

Y (1) =W0Tf 0,(X;) +e(t) (6)

where the subscript “ f 7 denotes a system with

faults. The output of the network when fault occurs
is

¥, () =WTa(x,) (7)
The residual now becomes

£(t) =y, (1) =9, () =Wp, 05 (x,) ~WTa(x, ) +€(t)
:Won o(X;) _WoTUo(Xf ) +WOTJO(Xf ) _WTU(Xf )

+WT -WT)a(x, ) +e(t)
=W 0o (%) +W(x,) +WTo(x, ) +et) (8

where W, =W, =W, . For sensor fault, the output
of the system (2) is now

yi (1) =y(t) +4y(t) +e(t) =Wy 0, (x) +Ay(t) +et)  (9)

where Ay(k) arises from the sensor fault. As the

neural network has not been updated, its output is
till given by (7). From (5), (6) and (2), the residual
is

£(t) =y, (1) -, (1) =W 0, () "W o (x, ) +Ay() +e(t)
=W 0, (x) “W o (x) +W T -WT)a(x) +WT ((x)
—0(x,)) +Ay(t) +elt)
2WT(0(X) ~0(X,)) +Dy(t) +W(x) +Wo (X) + e(t)

(10)
It is shown in Wang et al. (2001) that it is difficult
to detect small faults from the residual given by (5)
or (10).

3. FAULT DIAGNOSISBASED ON
ASYMPTOTIC LOCAL APPROACH

The asymptotic local approach is a statistical
technique that transforms a fault diagnosis problem
into an asymptotically equivalent but simpler
problem involving the detection of a change in the
mean of a Gaussian process. It is shown by Zhang et
al. (1998) that the approach can be applied to detect
small and incipient faults in a class of nonlinear
systems with known internal structure. In Wang et
al. (2001), the method is extended to systems with
unknown internal structure, modeled by neural
networks. The asymptotic local approach is then
used to develop the fault diagnosis technique, as
presented below. A method to determine the
threshold based on the x*-test is also presented.

3.1 Residual generation
Rewritten (2),

y(K) =W 0, (x) +e(k) = Zwa +ek)  (11)



where 0 =[05,00 0(0 o, (",
W, = [W01 Wy, Wop], and k is the sample
number. Let O'(X):[O'l(X) 0,(x) am(x)]T

and W=[W, W, W.,|", where m is the
number of weights. For simplicity, let m = p. Then
W, in (11) can be replaced by W and o,(x) by

o(x) . Denote the estimate of W by W . The output
of the trained network is

(k) =W o (x) = iv“vioi (¥) (12)

If m is chosen greater than p, then the estimated
neural network is over-parameterized, but under-
parameterized otherwise. Over-parameterization
increases the computation burden, whilst under-
parameterization increases the modeling errors. It is
shown in the example presented in the next section
that it is still possible to detect fault, though it may
take longer.

Gradient descent algorithm is used to train the
neural network (12), though other training
algorithms can be used. At the kth training period,

W< isgiven by

W = n(yk -0 -9k-9) 2R i =1 m

(13)

oy(k -1) =0;(x), hence

~ k-1
o

From equation (12),

equation (13) becomes

W= +nhy (k-1) (14)
where h (k) = a; (X)(y(k) — ¥(k)) isthe residua and
n is the learning rate. Define the residual vector,
H(k) = [h(k) hy(K) ha(k)| . After the
network is trained using N input and output data, the

residuals H(k) are computed from the network. In
the asymptotic local approach, the cumulative sum

of the residual Dy, (VV) computed for a window of

M samples is normalized by N as given below
(Benveniste et al, 1987).

DM\fvpﬁMZH(k)

- ﬁ M;o—(x(k»(vv;ao (x(K)) W o (x(K)))
v ﬁ Z o((k)e(k)
- ﬁ M;a(x(k))aT (x(K) W - W)

+ﬁia(x(k»w(x(k»+ﬁia(x(k))e(k)
(15)

Since the modeling error W(x) given by (5) is zero
from the assumption that W, is replaced by W and
0,(X) by o(x), W(x) is ignored in the following
analysis. The residual D,, (VV) can now be
approximated by,

D, (W) = ﬁia(x(k))d(x(k»(w W)

+ ﬁ Z (x(K)e(k)

It is well known that W , the estimate of W , is
asymptotically normally distributed and approaches
to W a M tends to infinity (Caines, 1988).
Consequently, the first term on the right hand side
of equation (16) is Gaussian distributed with zero
mean. Since e(K) is also Gaussian distributed, hence
D,, (W) is Gaussian distributed with zero mean.

When there is a component or an actuator fault,
the system is now given by (6). Denote the optimal
weight vector of the system with fault by W; , and

(16)

AW, the change in the weight arising from the
component or the actuator fault, then
W; -W =AW, (17

From (16) and (17), Dy, (W) becomes

D, W) :ﬁ M;a(x(k))UT (X, W)
+ﬁ “Za(x(k»e(k)

=ﬁ MZa(x(k))aT KW -W)  (18)

+ﬁia(x(k»e(k)

+ﬁia(x(k»«f (XKW,

Since AW_, is non-zero, hence D,, (W) is aso

non-zero, irrespective of a component or an actuator
fault. For a sensor fault, the system is given by (9),

and Dy, (W) is

. 1 M .
D, W) =——$ o(x(K))o™ (x(K)W ~W)
NZM -

+ﬁ 5 o0l + )

Similarly, Dy, (W) is aso non-zero if there is a

sensor fault. An online fault detection scheme is
derived in the following section using this result.

3.2 On-line fault detection procedure

After neurofuzzy network is trained off-line, the
proposed fault detection procedure is given below.



Sepl Select M, the window for computing the
cumulative sum of residuals.

Sep2 Compute the mean of the residuals
generated from the trained network as described
below. This is a necessary step as W(Xx) is
ignored, and also the mean of the residuals
calculated from a finite number of samples may
not be exactly zero.

1,
by =— H(
TN 2 (i)

Sep 3 At the k™ sampling period, compute the
cumulative sum of residuals

M
DY, = ﬁ (H (i) ~by) (20)

Because DY is a vector, it is necessary to

normalize the cumulative sum of residuals for
detecting the fault,

SV = (Dyi)" R(k) Dy} (21)
where R(k) isthe covariance matrix of H (k).

Siep 4 Fault is detected, if Sf > A, where A isthe

threshold. The selection of A is discussed in the
next subsection.

Sep5 Repeat Steps 3 and 4 for another sample if
no fault has been detected.

3.3 Determination of threshold A

The proposed procedure depends on the choice of A.
It is shown previoudy that for large k, fault
detection is equivalent to the detection of a change
in the mean of a Gaussian vector. It is well known
that the detection of the change in the mean of a
Gaussian vector can be formulated as a x*-test

(Benveniste et al., 1987). Therefore, S given by

(21) is x* distributed as M tends to infinity (Caines,
1988). Therefore, the threshold A can be chosen
from the x*-table for a given false alarm probability
(Zhang et al., 1998).

When computing the covariance matrix R, given by
(21), the following method is used to ensure that it is
positive definite. Assume that H(K), fork=1, ..., N
are obtained when the system is under normal
operating conditions. Divide the sequence H(k) into
L; segments of length L,, then an estimate of R. is

~ 1 Ly T
R = T DDy, (22
1 =
here D, =L S H(j+iL,), and LyL, = N. F
where D, = j+iL,), an = N. For
L2, /—LZIZ 2 12

sufficiently large L;, R. is generaly positive
definite, and if L, is chosen sufficiently large, then

D,; is approximately Gaussian distributed. In

genera, there are a large number of choices of L,
and L,, such that R, can be estimated accurately.

It is shown in the previous section that the
dimension of H(k) is the same as the number of
weights in the neurofuzzy network. As the
dimension of the neurofuzzy network, and hence the
dimension of H(K) can be very large, if too many B-
spline functions are chosen for the network. In this
case, R. and hence its inverse are difficult to
compute,. Therefore, the number of B-spline
functions in the network should be kept as small as
possible. Although the modeling error will be
increased, fault can till be detected, as shown in the
simulation example given later.

Remark 1: If the inverse of R, does not exist or is
difficult to compute, R is replaced by the norm

M

Z"H(i)"2 in normalizing D, (Wang et al.,
1=
2001). However, the x’-test may not be appropriate

in determining A.

4. SIMULATION EXAMPLE

The following nonlinear system is simulated.

Y DDYKD o vl +yk=D))
1+yk -1)? +y(k -2 2
+culk =1 +e(k -1

where y(K), u(k), and e(k), are the output, the input
and the white noise, and a= 2.5, b=0.3and c = 0.5.
The variance of ek) is 0.2* and the sampling
interval is 0.05s. The input of the neurofuzzy
network is: (u(k-1), y(k-1), y(k-2)). Two triangular
B-spline functions are chosen for each input, giving
atotal of eight weights. Although a small number of
B-spline functions may lead to larger modeling
errors, the covariance matrix R, and its inversion
can be computed more readily. From (23), 1000
input and output training data are generated with the
input u randomly generated within the range of -2
and 2. After training, the proposed fault detection
scheme described in Section 3.2 is applied to detect
the following faults, which occurred separately one
at time at 30s, (i) & = 2.2, (ii) by = 0.24, (iii) ¢ =
0.45, and (iv) yi(K) = y(k) — 0.05. Both (i) and (ii)
represents component faults, (iii), an actuator fault,
and (iv), a sensor fault. It is assumed the control uis
given by, u(t) = 1.2 sin(0.057t).

The residual H(K) is obtained from the trained B-
spline network after 15s. The proposed fault
detection scheme is applied after the system has



settled at t = 50s. For M = 100 (i.e,, 5s), Sf for
each fault are shown in Fig.1 (a) to (d), indicating it
changed after the occurrence of each fault. The
threshold A determined from the x*-table for a 5%
false alarm rate is 15.5073, as the dimension of H(k)
is eight. The time for the proposed fault detection
scheme to detect each fault are 36.35s, 34.5s, 31.5s
and 34.5s respectively, i.e., over 16 to 21s after each
fault has occurred. To investigate the effect of M on
the fault detection results, it is set respectively to
200 (i.e., 10s) and 300 (i.e., 15s). For lack of space,

only 351 for M = 200 are plotted, as shown in Fig. 2

(@) to (d). Again, S'\j, changed after the fault has
occurred. The time required to detect the faults for
different M isshown in Table.1, illustrating that for
large M longer time is required before faults are
detected.

5. CONCLUSIONS

In this paper, a fault detection procedure for
nonlinear systems based on the asymptotic local
approach is derived. The system is modeled first by
a neurofuzzy network, which is trained off-line.
Residuals are then generated from the neurofuzzy
network. Faults are detected if the normalized
cumulative sum of the residuals exceeds a threshold
determined by the x*test for a given false aarm
probability. The proposed procedure is demonstrated
by a simulation example. It is also shown in the
example that it requires longer time to detect the
faultif M islarge.
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Fig. 2 Fault detection using the proposed scheme for
M =200 (10s)

Table 1 Fault detection time with different M

M =100 | M=200 | M= 300
=22 36.35s 39.4s 39.85s
by =0.24 34.5s 39.45s 41.25s
¢ =0.45 315s 37.7s 43.65s
yi(K) = y(k) —0.05 34.5s 39.45s 40.95s
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