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1. INTRODUCTION

From the early sixties until the early eighties many
researchers have concentrated on the development of
systematic tools for the formulation of the dynamic
behavior of nonlinear electrical circuits. Most of these
works have in common that the methods are based on
the use of the energy and the topological properties
of the system. Pioneering results where reported by
e.g. Brayton and Moser (Brayton and Moser, 1964)
and MacFarlane (MacFarlane, 1970). Their method is
mainly based on the definition of some mixed-potential
function. Another approach was considered by Chua
and McPherson (Chua and McPherson, 1974). Their
method used the classical Lagrangian framework, but
the choice of coordinates departed radically from con-
ventional thinking. Almost a decade later, in (Kwatny
et al., 1982) a generalized Lagrangian framework is
proposed in which some severe limitations of the pre-
vious methods are relaxed. After this period the area
became relatively quiet, until recently with the intro-
duction of port-controlled Hamiltonian (PCH) systems
(Schaft, 2000) and Lagrangian modeling of power elec-
tronic systems in (Ortega et al., 1998) and (Scherpen
et al., 2000). In the context of switched-mode systems
it is shown that the dynamics, correspond to systems
derivable from a Lagrangian or port-controlled Hamil-
tonian point of view. This brings the advantage that

control techniques, like passivity-based control, can be
successfully applied to such circuits.

In this paper we will concentrate on two specific for-
mulations: the Brayton-Moser equations and PCH sys-
tems. In view of its practical applications related to
controller design, we want to establish a connection be-
tween the two formalisms and discuss their advantages
and disadvantages. The most trivial duality between the
two frameworks is that PCH systems assume the circuit
elements to be flux and charge controlled only, while
the Brayton-Moser equation impose the restriction that
the elements are current or voltage controlled. If the
frameworks are used to design feedback controllers,
the controller will consequently rely on some output
or state measurements, i.e., measurements of fluxes and
charges or currents and voltages. In a practical situation
the off-the-shelf available sensors give as output the
measurements in terms of current or voltage quantities
only. In the linear case the relation between flux and
current or charge and voltage is a static one, but if a
system contains highly nonlinear elements complicated
state transformations have to be included or quality
degrading approximations have to be made. Since in
general the elements may not have bijective relations,
even more serious problems may arise.

One reason to work with PCH systems is that the dy-
namic equations are formulated in physical or ‘natu-
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ral’ variables. In case of autonomous LC circuits this
can be considered a reasonable argument, but, on the
other hand, the inclusion of converter elements, like
sources and resistors seems not so natural in the PCH
framework. In principal, the constitutive relations of
controlled voltage sources, current sources and dis-
sipative elements are rather considered in terms of
currents or voltages, instead of fluxes or charges, see
e.g. (MacFarlane, 1970). It seems then to be more
natural to choose for the Brayton-Moser formalism.
Therefore, it is of interest to study if there exists some
fundamental relation, in a mathematical sense, between
both frameworks. Indeed, as will be shown throughout
the paper, under some reasonable assumptions such a
relation exists. As a consequence, essential and impor-
tant properties of one framework can be translated to
the other.

The paper is organized as follows. In Section 2, we
briefly recall the definition of the Brayton-Moser equa-
tions and PCH systems. In Section 3, the connections
between both frameworks are first established for au-
tonomous LC circuits. Section 4 deals with the con-
cept of implicit PCH systems. This concept is then
to be translated to the Brayton-Moser equations. As a
result, we provide a novel procedure to obtain mini-
mal state space representations of circuits containing
inductor-only cutsets and/or capacitor-only loops. The
section ends with an illustrative example. Finally, we
derive the dissipation and power-supply part of the
mixed-potential function for the Brayton-Moser equa-
tions from an PCH external port point of view. Both
frameworks are compared in the presence of power
sources and resistive elements.

2. THE BRAYTON-MOSER AND THE PCH
EQUATIONS

In this section we briefly recall both the concept of PCH
systems and the Brayton-Moser equations. Consider a,
possibly nonlinear, electrical network Σ consisting of ρ
capacitors and σ inductors. We start by restricting the
discussion to networks without elements in excess, i.e.,
we do not admit inductor-only cutsets and capacitor-
only loops. This condition will be relaxed in Section
4. The order of the network equals n = ρ + σ. Under
the assumption that the inductors are current controlled
and that the capacitors are voltage controlled, Brayton
and Moser (Brayton and Moser, 1964) have shown the
dynamical behavior of such circuit is governed by the
following system of differential equations

M∗(x)ẋ = Υ
∂P (x)
∂x

, (1)

where x = [vC1 , . . . , vCρ , iL1 , . . . , iLσ ]T denote the
inductor currents and capacitor voltages, respectively,
Υ = diag{−Iρ×ρ, Iσ×σ}, and M∗(x) = diag{C(vC),
L(iL)} contains the capacitance and inductance ma-
trices. The scalar function P (x) is called the mixed-
potential function to be specified later. As stated in
(Kwatny et al., 1982), equations (1) does not establish
a Lagrangian system in the classical sense, but it can
be viewed as some degenerate Lagrangian form. On the

other hand, in (Weiss and Mathis, 1997) it is shown that
(1) corresponds to a classical Lagrangian or Hamilto-
nian system, but their generalized coordinates do not
correspond to physical intuition, since they include in-
ductor charges and capacitor fluxes. However, if we
now assume that the inductors, resistors and voltage
sources are flux controlled, and the capacitors, con-
ductivities and current sources are charge controlled,
the port-controlled Hamiltonian system with Dissipa-
tion (PCHD) is represented by the following equation
(Schaft, 2000)

ẏ = [J (y) −D(y)]
∂H(y)
∂y

+ F(y) (2)

Here y = [qC1 , . . . , qCρ , ϕL1 , . . . , ϕLσ ]T ∈ R
n, de-

notes the capacitor charges and the inductor fluxes,
respectively, the scalar function H(y) is the total stored
energy in the circuit, called the Hamiltonian, and the
n × n structure matrix J (y) is a Dirac structure as-
sociated with the circuit topology. Since J (y) is a
power-preserving internal interconnection structure, it
is easily checked that J satisfies the important property

J (y) = −J T (y), (skew-symmetry). (3)

For electrical circuits without switches J (y) is usually
a constant matrix. For that, we set J (y) = J . Finally,
the vector F(y) represents the external sources, and
the matrix D(y) is a positive semi-definite symmetric
matrix containing the values of the resistive and con-
ductive elements.

In order to be able to relate the Brayton-Moser equa-
tions and the PCH framework, we impose the assump-
tion that all capacitors can be both voltage or charge
controlled, and that all inductors can be both flux or
current controlled, i.e.,

Assumption 1.Throughout the document it is assumed
that all dynamic elements have bijective relations, i.e.,

qCk
= C

∗
k(vC)↔ vCk

= Ck(qC), k = 1, . . . , ρ
ϕLj = L

∗
j (iL) ↔ iLj = Lj(ϕL), j = 1, . . . , σ

where C∗
k and L∗

j are smooth functions C∗
k : R → Rk

and L∗
j : R → Rj , respectively.

Both frameworks impose similar inherent limitations,
i.e., the PCH framework assumes the inductors to
be only flux-controlled and the capacitors to be only
charge-controlled, while the Brayton-Moser equations
are restricted to current and voltage controlled ele-
ments. In the following section we will show that
the frameworks bear an interesting similarity in struc-
ture. The analysis is first carried out for nonlinear au-
tonomous LC circuits.

3. AUTONOMOUS LC CIRCUITS

In the present study, our perspective is to view the
capacitor charges, qCk

, and the inductor fluxes, ϕLj ,
as what we call, the energy variables, and the capacitor
voltages, vCk

, and the inductor currents, iLj , as the co-
energy (or power) variables. The relation between the
energy and co-energy variables is given by

dqC

dt
= ψT iL,

dϕL

dt
= −ψvC (4)



where qC = [qC1 , . . . , qCρ ]T , ϕL = [ϕL1 , . . . , ϕLσ ]T ,
etc., and ψ is a constant matrix of appropriate di-
mensions. Note that (4) constitutes Kirchhoff’s cur-
rent and voltage laws, where we used the properties
q̇C = iC and ϕ̇L = vL. For autonomous LC circuits,
the Brayton-Moser equations (1) can be written as

d

dt

[
∂H∗(x)

∂x

]
= Υ

∂PT (x)
∂x

, (5)

where H∗(x) is the sum of the total magnetic and elec-
tric co-energy, i.e., H ∗(x) = H∗(vC , iL) = V ∗(vC)+
T ∗(iL), with V ∗(vC) and T ∗(iL) smooth functions
V ∗(vC) : R

ρ → R and T ∗(iL) : R
σ → R defined

as

V ∗(vC) :=
ρ∑

k=1

∫ vCk

0

C
∗
k(v′Ck

)dv′Ck

T ∗(iL) :=
σ∑

j=1

∫ iLj

0

L
∗
j (i

′
Lj

)di′Lj
,

respectively. At this point it is interesting to remark that
in theoretical mechanics H ∗(x) is often referred to as
the co-Hamiltonian. The scalar function PT (x) defines
the potential forces, which denote the rate of power in
the circuit. A very interesting property is given in the
following lemma

Lemma 1. Given the Brayton-Moser equations (5),
then the gradient of the total rate of power stored in
the capacitors and the inductors, PC(x) and PL(x),
satisfies the following relation

Υ
∂2PT (x)

∂x2
=

[
0ρ×ρ ψT

−ψ 0σ×σ

]
, (6)

with ψ a constant σ × ρ matrix as defined in (4) and
PT (x) = PL(x) = −PC(x). Hence, (6) defines a
power-preserving relation between the energy variables
and the power variables called a Dirac structure.

Proof: The proof is mainly based on a straight for-
ward application of Tellegen’s Theorem. Consider the
rate of power conserved in the inductors defined as
PL(vC , iL) =

∑σ
j=1 iLjvLj = iTLvL. From (4) we

know that vL = −ψvC and therefore that iTLvL =
−iTLψvC . In a similar fashion, the rate of power con-
served in the capacitors, defined as PC(vC , iL) =∑ρ

k=1 vCk
iCk

= vT
CiC , can be written as vT

CiC =
vT

CψT iL, from which we conclude that PT (vC , iL) =
PC(vC , iL) = −PL(vC , iL). Calculation of the second
partial derivatives yields the result. �
In these notations, the dynamics of the network can be
represented as a set of first order equations given by

M∗(x)ẋ + J Tx = 0, (7)

where J denotes the interconnection (Dirac) structure
defined in (6), i.e.,

J := Υ
∂2PT (x)

∂x2
, (8)

and M∗(x) := ∂2H∗(x)
∂x2 is a positive definite n × n

matrix referred to as the co-energy matrix. In order
to establish the connection between both frameworks

we have to rewrite (5) in terms of the ‘natural’ energy
variables qC and ϕL. Before we continue, let us first
study the structure of the co-energy matrix M∗(x). It
is easily checked that if the circuit contains no magnet-
ically coupled-inductors, no inductor-only cutsets, and
no capacitor-only loops, M∗(x) is a diagonal matrix,
and thus symmetric. If, on the other hand, there exists
a coupling between one or more inductors, additional
paths for the energy transfer are introduced which do
not contribute extra current coordinates to the formu-
lation. Under the assumption that the coupling coeffi-
cients satisfy the reciprocity condition, i.e,

∂L∗
j (iL)

∂iLk

=
∂L∗

k(iL)
∂iLj

, j, k = 1, . . . , σ, j �= k,

we may conclude that M∗(x) remains symmetric.
For a detailed discussion on the inclusion of coupled-
magnetics, see e.g. (Scherpen et al., 2000). We thus
have the following property

M∗(x) = diag
{
∂C∗(vC)

∂vC
,
∂L∗(iL)

∂iL

}
.

Recall that qCk
= C∗

k(vC) and ϕLj = L∗
j (iL). Hence,

by multiplying (5) with the interconnection structure
(8) and by using Lemma 1, the Brayton-Moser equa-
tions can be written as

ψT diL
dt

= −ψT

[
∂L∗(iL)

∂iL

]−1

ψ vC (9)

ψ
dvC

dt
= ψ

[
∂C∗(vC)

∂vC

]−1

ψT iL (10)

Since we assume the (qC , vC)- and (ϕL, iL)-curves to
be bijective,

∂C(qC)
∂qC

:=
[
∂C∗(vC)

∂vC

]−1

, and

∂L(ϕL)
∂ϕL

:=
[
∂L∗(iL)

∂iL

]−1

exist. Finally, by using (4), we obtain a system of
second order equations in terms of the inductor fluxes
and capacitor charges given by

q̈C = ψT ∂L(ϕL)
∂ϕL

ϕ̇L (11)

ϕ̈L =−ψ
∂C(qC)
∂qC

q̇C . (12)

The PCH equations (2) for autonomous LC circuits can
be written in partitioned form as

q̇C = ψT ∂H(qC , ϕL)
∂ϕL

(13)

ϕ̇L = −ψ
∂H(qC , ϕL)

∂qC
. (14)

Comparing (11) and (12) with the PCH equations (13)
and (14), it is easily recognized that (9) and (10),
in terms of the fluxes and charges, are precisely de-
scribing the time-derivative or ‘lifted’ version of the
PCH equations. Thus, the port-controlled Hamiltonian
equations can be obtained from the Brayton-Moser



equations by a multiplication with a constant ψ and
taking the integral with respect to time. Of course,
the most direct relation is that both formalisms de-
scribe the Kirchhoff laws. Furthermore, the Hamilto-
nian, H(qC , ϕ) is defined as the sum of the total mag-
netic and electric energy in terms of qC and ϕL, i.e.,
H(qC , ϕL) = V (qC) + T (ϕL). As a direct conse-
quence of Assumption 1, the relation between the co-
Hamiltonian and the Hamiltonian is defined through
a full Legendre transformation defined as follows. Let
y = [qC1 , . . . , qCρ , ϕL1 , . . . , ϕLσ ]T , with

yj :=
∂H∗(x)
∂xj

, j = 1, . . . , n (15)

then one defines the Hamiltonian function H(y) as the
Legendre transform, x = F(y), of H ∗(x), i.e.,

H̃(y, x) =
ρ+σ∑
j=1

yjxj −H∗(x). (16)

The Legendre transformation is then completed if
we define the Hamiltonian as H(y) := H̃(y,F(y)),
with y = M∗(x)x. Since ẏ = J x and H(y) =
1
2y

T [M∗(F(y))]−1y, we obtain the PCH dynamics in
a similar fashion as in (7)

ẏ + J TM(y)y = 0, (17)

where M(y) := [M∗(F(y))]−1 is a diagonal and
positive definite symmetric n × n matrix referred to
as the energy matrix. Hence, we have shown

Proposition 1. The port-controlled Hamiltonian equa-
tions (13) and (14), with the Hamiltonian being the total
energy, dualize the Brayton-Moser equations given by
(5), with the co-Hamiltonian expressing the total co-
energy.

Consequently, equations (5) establish a port-controlled
co-Hamiltonian (PCH∗) framework with a Dirac struc-
ture given by the interconnection matrix J .

4. EXCESS ELEMENTS: IMPLICIT SYSTEMS

In this section we extend the formulation to LC
networks which contain capacitor-only loops and/or
inductor-only cutsets. In (Kwatny et al., 1982) it is
stated that the excess elements do not contribute a
generalized coordinate or velocity to the formulation,
but they do contribute extra co-energy terms to their
Lagrangian. Consequently, the order of the network is
not simply n = ρ + σ. Although their method seems
the most direct and simple one when dealing with La-
grangian dynamics, it becomes much more involved for
Hamiltonian systems, especially when the constitutive
relations are nonlinear. Here we propose an alternative
method which is based on the introduction of implicit
systems using Lagrange multipliers.

In the context of mechanical systems it is well-known
(Schaft et al., 1996) that the kinematic constraints can
be expressed as AT (q)q̇ = 0, with q̇ ∈ R

m the vector
of generalized velocities and AT (q) some m × k ma-
trix of rank k. The corresponding constraint forces are
of the form AT (q)λ, where the Lagrange multipliers

λ ∈ R
m are determined by the requirement that the

constraints AT (q)q̇ = 0 need to be satisfied at all time.
If we transform the latter properties to the electrical
domain, the corresponding PCH equations become

˙̃y = J̃ ∂H(ỹ)
∂ỹ

+ A(ỹ)λ (18)

0 =AT (ỹ)
∂H(ỹ)
∂ỹ

, (19)

where we denote ỹ ∈ R
ñ, J̃ , and H(ỹ) as the

augmented- energy variables, interconnection struc-
ture, and Hamiltonian, respectively. In other words, the
constraint PCH equations are possibly non-minimal in
the sense that certain energy variables have to be elim-
inated first to obtain a minimal representation of order
n ≤ ñ := ρ+σ. In the electrical domain A is constant,
i.e., A(ỹ) = A ∈ R

(ρ+σ)×k , with k the number of
independent constraints. Equation (18) together with
(19) is often called an implicit generalized PCH system
(Schaft et al., 1996). In order to accommodate the use
of Lagrange multipliers with the Brayton-Moser equa-
tions, (5) must be altered as follows

d

dt

[
∂H∗(x̃)

∂x̃

]
= Υ

∂P̃ (x̃)
∂x̃

, (20)

where x̃ = [ṽT
C , ı̃TL, ]T ∈ R

ñ, P̃ (x̃) := −ṽT
C ψ̃T ı̃L −

ṽT
CACλC + ı̃TLALλL, λ = [λT

C , λT
L ]T and

AT x̃ :=
[
AT

C 0
0 AT

L

] [
ṽC

ı̃L

]
, (21)

with AT
C ṽC = 0 and AT

L ı̃L = 0. Following (Schaft
et al., 1996), we call (20) together with (21) an im-
plicit generalized PCH∗ system. In case the network
contains capacitor-only loops or inductor-only cutsets,
the coordinates of the resulting elements in excess can
be viewed as intermediate help-variables. These help-
variables are finally removed using the constraint equa-
tion. Let us next demonstrate the procedure to obtain a
minimal set of equations by studying a simple example.

Example: Consider the simple LC network as depicted
in Fig. 1. The network is obtained from (Chua and

L1

✛

L3

✲

C1

+

✲

❄
L2

+

C3
C2

L4

−

+−

−

Fig. 1. LC circuit with elements in excess.

McPherson, 1974), but we have interchanged the in-
ductor L1 with capacitor C3 and assume for simplicity
that the constitutive relations are linear. It contains two
excess elements; one arising from the inductor cutset
formed by {L1, L3, L4}, and one arising from the ca-
pacitor loop {C1, C2, C3}. An appropriate choice is
to take L1 and C3 as the excess elements. The corre-
sponding co-Hamiltonian is defined as H ∗(vC , iL) =
1
2

∑3
k=1 Ckv

2
Ck

+ 1
2

∑4
j=1 Lji

2
Lj

. The algebraic con-
straints corresponding to the capacitor-only loop and



the inductor-only cutset are given by vC1 − vC2 +
vC3 = 0 ⇒ AT

C = [1 −1 1] and −iL1 + iL3 +
iL4 = 0 ⇒ AT

L = [−1 0 1 1]. It follows that λ ∈ R
2.

Using Kirchhoff’s current or voltage law, the matrix ψ̃
is readily found as

ψ̃T =


 0 0 0 1

0 1 1 0
0 0 0 0


 .

Plugging the latter into (20) together with (21), and
after eliminating λ1, λ2, we obtain the equations of
motion in the form M∗ẋ + J Tx = 0 as

(C1 + C3)
dvC1

dt
− C3

dvC3

dt
− iL4 = 0

(C2 + C3)
dvC2

dt
− C3

dvC1

dt
− iL2 − iL3 = 0

L2
diL2

dt
+ vC2 = 0

(L1 + L3)
diL3

dt
+ L1

diL4

dt
+ vC2 = 0

(L1 + L4)
diL4

dt
+ L1

diL3

dt
+ vC1 = 0

Next, we derive the dynamics of the LC circuit us-
ing the implicit port- controlled Hamiltonian descrip-
tion. The corresponding Hamiltonian is defined as
H(qC , ϕL) = 1

2

∑3
k=1 C−1

k q2
Ck

+ 1
2

∑4
j=1 L−1

j ϕ2
Lj

.
The constraint matrices AC , AL, and the augmented
interconnection structure ψ̃ are as before. According to
(19), the constraints are now given by

qC1
C1

− qC2
C2

+
qC3
C3

= 0 and −ϕL1
L1

+ ϕL3
L3

+ ϕL4
L4

= 0. Hence,
after plugging the information in (18), using (19) and
eliminating the Lagrange multipliers yields

q̇C1 =
C1(C3 + C1)

Γ
ϕL4

L4
+

C1C2

Γ

(
ϕL2

L2
+

ϕL3

L3

)

q̇C2 =
C1(C3 + C1)

Γ

(
ϕL2

L2
+

ϕL3

L3

)
+

C1C2

Γ
ϕL4

L4

ϕ̇L2 = −qC2

C2

ϕ̇L3 = −L3(L4 + L1)
Λ

qC2

C2
+

L1L4

Λ
qC1

C1

ϕ̇L4 = −L4(L3 + L1)
Λ

qC1

C1
+

L1L3

Λ
qC2

C2
,

with Λ = L1L3 + L3L4 + L4L1 and Γ = C1C2 +
C2C3+C3C1. Notice that the interconnection structure
J is extracted from J̃ by deleting the zero rows and
columns of ψ̃. Notice also that the PCH equations are
not the same as the ones which can be obtained by
inverting the co-energy matrix M∗. �

5. DISSIPATIVE ELEMENTS AND SOURCES

In this section we extend the Brayton-Moser equations
with dissipative elements and sources in an alternative
way in comparison to e.g. (Brayton and Moser, 1964;
Massimo et al., 1980). For sake of simplicity, we will
again restrict the developments to circuits that do not
contain excess elements. This restriction can be easily
relaxed using the developments of the previous section.
Let us start by decomposing the mixed-potential func-
tion into

P (x) = [PT + (PE − PR) − (PJ − PG)](x). (22)

Recall that PT (x) represents the rate of internal power
in the capacitors or inductors, i.e., PT (x) = PC(x) =
−PL(x). The powers PR(x), PG(x) represent half
the dissipated power in the resistive and conductive
elements, respectively, while the supplied power by
the external voltage and current sources is defined by
PE(x) and PJ(x). In Section 3 we have defined PT (x)
using the notion of a power preserving interconnection
of the port variables. In the following we extend this
idea to derive the quantities PR(x), PG(x), PE(x),
and PJ (x). According to Proposition 1 and in a similar
fashion as for PCH systems in (Schaft, 2000), we may
define (1) in the following alternative way

∂2H∗(x)
∂x2

dx

dt
− Υ

∂PT (x)
∂x

=Kγ (23)

ξ =KTx, (24)

where ξ = KTx, with K a constant n × m matrix, is
the output equation of the circuit, and Kγ are the gen-
eralized forces (control inputs) applied to the circuit.
As in (Schaft, 2000), we like to view these inputs and
outputs as external ports of the circuit. In case a circuit
contains dissipative elements, some or all ports are
terminated by the correspondingα (voltage-controlled)
conductivities and β (current-controlled) resistances,
m = α + β ≤ n. Termination of these ports can
be considered as feedback laws describing the relation
between the dynamic elements and the dissipative ele-
ments. Indeed, if we subdivide Kγ in (23) and (24) as
Kγ := KGγG +KRγR, then the corresponding outputs
are given by ξG and ξR. The vector γG, ξG ∈ R

α, and
the vector γR, ξR ∈ R

β denote the power variables
at the ports which are terminated by conductive and
resistive elements, respectively, i.e.,

γGk
=−Gk(ξG), k = 1, . . . , α (25)

γRj =−Rj(ξR), j = 1, . . . , β, (26)

where Gk ≥ 0, Gk(0) = 0, and Rj ≥ 0, Rj(0) = 0,
are smooth functions Gk : R → Rk and Rj : R → Rj

stemming from Ohm’s law. The voltage and current
potentials of the conductive and resistive elements are

PG(ξG) =
α∑

j=1

∫ ξGj

0

Gj(ξ′G)dξ′Gj

PR(ξR) =
β∑

k=1

∫ ξRk

0

Rk(ξ′R)dξ′Rk
.

Hence, we may rewrite (25) and (26) as

γG =−∂PG

∂ξG
(ξG) := −QG(ξG)ξG

γR =−∂PR

∂ξR
(ξR) := −QR(ξR)ξR,

with QG(ξG) and QR(ξR) some symmetric matrices.
The dissipative elements are then included into the
Brayton-Moser equations as follows. Let the scalar
function PD(ξ) : R

α+β → R denote the difference
between the dissipative voltage and current potentials,
i.e., PD(ξ) := PG(ξG) − PR(ξR), then

∂PD(KTx)
∂x

= KQ̃(x)KT x, (27)



with

Q̃(x) := diag
{
QG(KT

Gx),−QR(KT
Rx)

}
.

Equation (27) is precisely the definition of the dis-
sipative current and voltage potentials (referred to as
resistive content and co-content in (MacFarlane, 1970))
as derived in (Brayton and Moser, 1964). Finally, after
substitution of the latter into Kγ = KGγG + KRγR

yields

∂2H∗(x)
∂x2

dx

dt
= Υ

∂P (x)
∂x

, (28)

with P (x) = PT (x)+PD(x) the total mixed-potential

P (x) = −vT
CψT iL +

∫ x

0

KQ̃(x′)KTx′dx′. (29)

For circuits without sources we have thus re-derived
the existence and the form of the dissipative parts
of the mixed-potential function and we have a pro-
cedure to obtain such functions. A similar procedure
can be followed to include the voltage and current
sources. This will lead to an external potential func-
tion PF (x) := PE(iL) − PJ(vC) (supplied content
and co-content, respectively). The complete Brayton-
Moser equations derived from an external port point
of view are then defined by extending (29) as P (x) =
PT (x) + PD(x) + PF (x). Summarizing, we may call
the Brayton-Moser equations (28), a port-controlled
co-Hamiltonian framework with dissipation (PCH∗D).
We may interpret (28) as the closed-loop system de-
picted in Fig. 2. From this Figure it is clearly seen
that the dissipative elements can be viewed as feedback
loops.

d

dt

[
∂H∗(x)

∂x

]
− Υ

∂PT (x)
∂x

= τ

−Υ
∂PD(x)

∂x

Υ
∂PF (x)

∂x
✲ ✲

✻

✲

✛

✲

dissipated

power

−

+applied

power

τ x

❄

Fig. 2. Closed-loop interpretation of the Brayton-
Moser equations.

6. SUMMARY AND CONCLUSION

In this paper we have established a direct connec-
tion between the classical Brayton-Moser equations
(old fish) and the recently developed port-controlled
Hamiltonian framework (new fish). A special Legendre
transform is used to relate the energy and co-energy
functions. It has been shown that if the Brayton-Moser
equations are expressed in terms of the natural coordi-
nates (inductor fluxes and capacitor charges) they lead
to a time-differentiated version of the port-controlled
Hamiltonian equations. As a result, many important
properties can be exchanged between the two frame-
works. We have developed a novel systematic proce-
dure to deal with networks containing inductor-only
cutsets and capacitor-only loops. This was inspired
by the concept of implicit mechanical systems using

Lagrange multipliers and kinematic constraints. More-
over, the mixed-potential function as defined by Bray-
ton and Moser was shown, in partitioned form, to be
derivable from an PCH external port point of view. For
that reason, we may call the Brayton-Moser equations
a port-controlled co-Hamiltonian system with dissipa-
tion (PCH∗D).

During the developments in this paper we have seen
that the frameworks exhibit dual inherent limitations.
As a result, one sometimes has to make a choice be-
tween the one framework or the other. In case a given
circuit contains non-bijective charge-controlled capac-
itors, one takes the port-controlled Hamiltonian equa-
tions, while in case of non-bijective current- or voltage
controlled resistors, or a highly nonlinear model to
be used for feedback control, one should rather vote
for the Brayton-Moser equations. Although not shown
here, we conclude by stating that the Brayton-Moser
framework can also be easily accommodated for the
inclusion of controlled switches. Results concerning
this topic will be reported elsewhere.
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