
TESTING EMBEDDED CONTROL SYSTEMS USING
HARDWARE-IN-THE-LOOP SIMULATION AND

TEMPORAL LOGIC

Marco A.A. Sanvido, Vaclav Cechticky
Walter Schaufelberger

Automatic Control Laboratory
Swiss Federal Institute of Technology

Physikstrasse 3
CH-8092 Zürich

Abstract: In this paper a method for testing the implementation of embedded control
systems using a hardware-in-the-loop simulator (HILS) and a temporal logic tester is
proposed. The goal of the simulator is to replicate a given dynamical process, to be
able to generate faults and to automatically analyze the Embedded Control System (ECS)
response against a temporal logic specification. The paper explains and demonstrates this
technique by using a simple example. The HIL simulation is implemented on an Oberon
(Wirth and Gutknecht 1992) platform, the controller used for the example is implemented
on the Java real-time platform JBed (Esmertec n.d.).

Keywords: Embedded systems, Simulation, Temporal logic

1. INTRODUCTION

Due to the rapid development of digital-processor
technology, ECS control many devices used in daily
life. Moreover many of these systems operate in
safety-critical situations and therefore call for a rigor-
ous engineering. This crucial point is the reason why
so much research effort is put into the development
of methodologies for the design, development, imple-
mentation and testing of ECS (O’Connor 2001).

Hardware-in-the-loop simulation (HIL simulation or
HILS) is a kind of real-time simulation were the input
and output signals of the simulator show the same time
dependent values as the real process, see (Isermann
1999, Ledin 2000). Such simulators allow to test the
real embedded control system (ECS) under different
real working loads and conditions. Other simulation
methods do not allow to test the real embedded control
system as a complete system. Often the controller
part, which is about only 20-30% of the ECS software
(Pasetti and Pree 2001), or the software components

are tested independently. HILS makes it possible to
test the complete ECS system. Moreover the temporal
logic tester and the fault generator allow to automatize
the testing procedure, which is usually done manually
by an operator.

In developing such products and systems, testing
and not design is usually the more expensive, time-
consuming and difficult activity – cited from the IEEE
Spectrum magazine (O’Connor 2001). Therefore not
only a tool for helping in the design and implementa-
tion plays an important role but also tools which allow
the implementation of testing environments.

The paper is subdivided as follow: the first section
describes the steps needed to design and test an ECS
system. The second section motivates and explains the
concepts of this approach. The third section demon-
strates in detail how the system works by means of
a simple example. Some conclusions are made in the
last section.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

2. DESIGN OF AN EMBEDDED CONTROL
SYSTEM

In Figure 1 a schematic view of the design process
of an ECS is shown. As you see, many different
steps are needed in the development of a complete
ECS system. For many of these steps well know
theoretical approaches and methods have been studied
and successfully applied to real world problems. There
are however some steps were a mature methodology is
missing. One of such steps is the testing of ECS, more
precisely the on-the-fly testing of the final ECS system
under real working conditions. This approach goes
in this direction allowing to automatize the testing
procedure.

Identification

Control

Embedded
System

System

Rapid
Prototype

HIL
Simulator

Simulator
Software

Test

Test

F
ie

ld
 T

es
tin

g

La
b

T
es

tin
g

V
al

id
at

io
n

Test

Methods:
ARX, ARMAX...

Methods:
LQR, MPC, ...

Methods:

Generation
Automatic Code

Fig. 1. Control system design

3. CONCEPT

The simulation environment is shown in Fig. 2. The
ECS sends its outputs to the process, which is replaced
by the simulator, and the simulator sends the sensor
data back to the ECS. Since the ECS is working at
a given sampling rate the simulator must compute
the new values at least at the same rate. Moreover
the hardware interface between ECS and process and
between ECS and simulator must be somehow imple-
mented. These problems are analyzed more detailed in
(Sanvido and Schaufelberger 2001), and they are not a
topic of this paper.

The simulator computes the system dynamics from
the mathematical model of the process, and is able
to generate faults which will be propagated to the
ECS. The fault generation is done by using a fault de-
scription and specification language, called FAUSEL.
This language allows to specify how, and when faults
are generated during a given simulation run, but in

Embedded
System

Digital & AnalogDigital & Analog

Hardware-in-the-loop Simulator

ActuatorsSensors Process

Fig. 2. HIL simulator

addition it allows to specify the correct reaction of the
ECS to the fault. The fault generation is implemented
using an object-oriented framework which simplifies
the software implementation of the fault generation,
whereas the fault specification is done using an exten-
sion of LTL – Linear Temporal Logic (Clarke 1999)–,
called MTL – Metrical Temporal Logic (Manna and
Pnueli 1992). This logic was chosen for two reasons,
because boolean expressions are not strong enough to
express the temporal behavior of an ECS response,
and also because temporal logic is a standard specifi-
cation language used in formal verification. The MTL
specification is transformed by FAUSEL in an Alur-
Dill timed automaton (Alur 1999). The automata will
be traversed at each simulation step in order to detect
a correct/incorrect ECS response.

4. A SIMPLE EXAMPLE - A BARRAGE
SIMULATOR

In this simple example the application of the simula-
tion framework to a real problem is demonstrated. The
simulator simulates an hydro-power plant barrage (see
Fig. 3), the barrage is composed of two moving parts,
the segment and the flag. The segment is moved by the
motor α , and moves the barrage upward or downward
(h1). The water in the reservoir can flow below the
barrage from the aperture h1. The flag is located on
the top of the segment and is moved with motor β , the
flag can change the h2 height. The water can thus flow
over the barrage.

The dynamical model of the barrage is very simple
and similar for the motors α and β . In this paper only
motor α is discussed . To use a complex barrage dy-
namical process model and a complex control system
is not the goal of the simulation. The goal is to be able
o automatically check if erroneous conditions, which
can happen on the barrage, are correctly detected and
properly handled by the ECS.

β

α

h1

h2

Water

flow

flow

reservoir

Fig. 3. The barrage

The possible faulty conditions to be tested are:

� Leak: an oil leakage from the motor α forces the
barrage to close, reducing the high h1.

� Stuck: the segment cannot be completely closed
because something is blocking the segment.

These two faults must be detected and a fault reaction
procedure has to be started by the control system. In
the leakage case the controller will simply maximize
its output power, in order to compensate the position
error, and release an alarm. In this way the controller
is able at least to stop the segment from closing. In the
stuck case the controller will try to open the segment
in order to clean the reservoir ground, and thereafter
will re-try to close the segment.

The simulator and the ECS are running at a 5Hz fre-
quency, and communicate via a simple serial connec-
tion.
SIMULATE Barrage;

FAULT W0 IS Barrages.Stuck;
START 0.0;
STOP 50.0;
PERIOD 0.2;

SPEC (* open the barrage to clean*)
F((alpha <= 847) & F(alpha>=945))

END W0;

FAULT F1 IS Barrages.Leak;
START 10.0;
STOP 30.0;
PERIOD 0.2;

SPEC (*detect the alarm *)
F(G[0,5](u0 > 1))

END F1;

END Barrage.

Fig. 4. FAUSEL Description

After starting the simulation and compiling the FAUSEL
description (see the code of the used FAUSEL descrip-
tion in Fig. 4, the generated automata are shown in
Fig. 5) the ECS will control the barrage to a given

reference position for the motors α and β . The sim-
ulator will analyze the ECS response, traversing the
automata generated by FAUSEL and will compute the
new actual position of the barrage.

TRUE TRUE

OK OK

u0>1TRUE

F(G<0,5>(u0>1))

timer>=5

timer:=0
u0>1alpha<=847

alpha>=945

F((alpha<=847) & F(alpha=>945))

Fig. 5. FAUSEL generated automata

Figure 6 shows the user interface of the simulator. The
user interface shows also a simplified representation
of the barrage and the actual simulated position of the
segment and flag.

Fig. 6. Barrage simulator interface

4.1 The Controller and Diagnostics Implementation

The control system consists of two interconnected
parts, the controller and the diagnostic system. The
inputs and outputs of the barrage systems are analyzed
by the diagnostic system in order to detect failures
and to ask the controller to correct them. The barrage
position is controlled by two independent P controllers
and the diagnostic system is able to detect two types
of faults.

The control system is implemented in the object-
oriented language Java (Sun Microsystems n.d.) and is
running on the embedded real-time operating system
Jbed (Esmertec n.d.). The class diagram in Fig. 7 is
a graphical representation of the implemented control
system according to UML methodology. The class
SerialConnection establishes a serial link connection
and communication, the class PController implements
a P-controller, the class FaultDetection provides an

algorithm for data analysis, and the class FifoQueue is
first-in first-out queue. An instantiation of the classes
is done in the class BarrageControlSystem. The class
BarrageControlSystem has only one method main
which implements the control system and is called
when the ECS is started.

Fig. 7. UML diagram

The control system was developed on the host com-
puter and then compiled into Java bytecode by the
Java compiler included in Java2 JDK 1.3 from Sun
Microsystems. Subsequently the bytecode is compiled
into native machine code, linked with Jbed operating
system components by the linker in the Jbed IDE,
and downloaded to the target system via a TCP/IP
connection. The hardware-in-the-loop simulation of
the barrage is running on the host computer as shown
in Fig. 8, or on any other machine that allows to run
the barrage simulator and supports the serial commu-
nication for data exchange with the target system. As
target system the RPX Lite (Embedded-Planet n.d.)
board based on the Motorola MPC823 intended for in-
dustrial control applications (Motorola n.d.) was used.

Fig. 8. HIL simulator/Jbed host and target systems

4.2 Results

This section shows the results of two simulation runs,
in the first the controller opens the segment to position
1100. After 10 seconds the simulator will start to
generate a leakage fault and the correct ECS responses
are shown in Fig. 9 and in Fig. 10.

In Figure 11 the ECS response is shown, when no
faults are generated. The correct ECS response is
specified in FAUSEL as

F(G[0;5](u0> 1))

meaning that eventually after the fault generation the
motor α input will augment its output over the normal
limit of 1 for at least 5 seconds. This specification is
automatically verified by the simulator.

0 5 10 15 20 25 30
900

950

1000

1050

1100

1150

reference

alpha

begin of leakage

leakage detected fault response
verified

end of leakage

Fig. 9. Leak-fault response

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

u0 > 1 for
more than 5s

u0

Fig. 10. ECS control output

0 5 10 15 20 25 30
900

950

1000

1050

1100

1150

reference

alpha

Fig. 11. No-leak response

In the second simulation run, at time 0s the stuck fault
is started and kept for 50s, or till the specified response
is verified. In this case the specification is

F((alpha<= 847)&F(alpha>= 945))

meaning that eventually after the fault started the
segment will go below 847, i.e. it will touch the
obstacle, and after that eventually will go higher then
945. A temporal limitation could also be added to
specify a maximal response time of 5s and 0s minimal
reaction time. The specification would be

F((alpha <= 847)&F[0;5](alpha>= 945))

Figure 12 shows the response of the ECS in presence
of a stuck fault, in Fig. 13 the ECS response in the
normal case.

0 5 10 15 20 25 30
600

650

700

750

800

850

900

950

1000

945

alpha

847

reference

fault active

fault detected

Fig. 12. Stuck-fault response

0 5 10 15 20 25 30
600

650

700

750

800

850

900

950

1000

alpha

reference

Fig. 13. No-stuck-fault Response

5. CONCLUSIONS

In this paper an approach is demonstrated, which
allows a more accurate, precise and automated testing
of ECSs. The HIL simulator has also been used to test
– only partially – other ECS like the OLGA system
(Chapuis 1999), which is an autopilot system for a
model helicopter. This approach can be used also for
real industrial problems with no changes, the only
limitation is the temporal specification complexity,
since the translation from MTL to timed automata can
produce very large automata.

The barrage example was inspired by a real industrial
barrage system but is still far from the complexity of
a real application. However we think that such an au-
tomatic testing facility would simplify and automatize
the testing procedure of an ECS in its final develop-
ment stage, which is usually done be simple manual
checking of the system.

Currently, we are porting the system to a more open
Java platform, which will allow other people to use
and test the approach. The actual software, imple-
mented on a modified Oberon platform (Wirth and
Gutknecht 1992), is not well suited to distribute to a
large community. Moreover, we also integrating the
HIL Simulator within Matlab by using Matlab’s Java
interface (Schär and Samedani 2001).

REFERENCES

Alur, R. (1999). Timed automata. In: Proceedings of
the 11th International Computer Aided Verifica-
tion Conference. Springer Verlag. pp. 8–22.

Chapuis, J. et al. (1999). Control of helicopters.. In:
Control of Complex Systems. Springer Verlag.
pp. 359–392.

Clarke, E.M. et al. (1999). Model Checking. MIT
Press.

Embedded-Planet (n.d.).
http://www.embeddedplanet.com.

Esmertec (n.d.). http://www.esmertec.com.
Isermann, R. et al. (1999). Hardware-in-the-loop sim-

ulation for the design and testing of engine-
control systems. Control Engineering Practice
7, 643–653.

Ledin, J.A. (2000). Hardware in the loop simulation.
Emdedded System Conference.

Manna, Z. and A. Pnueli (1992). The Temporal Logic
of Reactive and Concurrent Systems. Springer.
New York.

Motorola (n.d.). http://www.motorola.com.
O’Connor, P.D.T. (2001). Neglect testing at your peril.

IEEE Spectrum 38(7), 18.
Pasetti, A. and W. Pree (2001). Embedded software

market transformation through reusable frame-
works. In: Proceedings of the First Embedded
Software Workshop (T. Henzinger and C. Kirsch,
Eds.).

Sanvido, M. and W. Schaufelberger (2001). Design of
a framework for hardware-in-the-loop simulation
and its application to a model helicopter. In: CD:
Proceedings of the 4th International EuroSim
2001 Congress (A. Heemmink and L. Dekker,
Eds.).

Sanvido, M.A.A. (2002). Hardware-in-the-loop Simu-
lation Framework. PhD thesis. ETH Zurich.

Schär, C. and R. Samedani (2001). HIL framework for
Java. Master thesis. Automatic Control Labora-
tory, ETH Zurich.

Sun Microsystems (n.d.). http://java.sun.com.
Wirth, N. and J. Gutknecht (1992). Projekt Oberon -

The Design of an Operating System and Com-
piler. ACM Press. New York.

