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Abstract: This paper introduces the theory of cyclic statistics as a powerful tool for
the diagnosis of gear faults. More precisely, a new method based on the cyclic
bispectrum, a third order cyclic statistical function, is used for monitoring. This
estimator furnishes a valuable means of detecting and characterising non-linear
coupling effects as well as any periodic correlation between different components
in machines. Therefore, the cyclic bispectrum provides much more combined
information than classical methods such as spectrum and cepstrum analysis.
Application to the diagnosis of spalling of the gear teeth of the U.S. Navy helicopter
demonstrates the effectiveness of this new parameter for a good diagnosis.
Copyright © 2002 IFAC
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1. INTRODUCTION

This paper is concerned with the development of
signal processing methods to perform an early
diagnosis of gears faults using vibration signals.
Until now, in signal processing, most established
methods often rely on a fundamental assumption of
stationarity and ergodicity of the processes involved.
These notions are appealing because they give the
possibility of estimating parameters from a single
realisation. However, this assumption is a
mathematical idealisation which, in some case, may
be valid only as an approximation to the real
situation. Thus, it can exclude many real-life non
stationary signals. More particularly, there is a
subclass of non stationary signals called
cyclostationary signals. These signals are
characterised by a periodic variation of their
statistical parameters. The importance of this class is
that it matches the physical behaviour of gear

vibration signals (Cadpessus, et al., 2000). For
analysing such signals, several techniques were
applied such as spectral analysis, cepstrum (Randall,
1975), time frequency analysis (Wang and
McFadden, 1993) and higher order statistics (Nikias
and Raghuveer, 1987; Hinish, 1994).

The theory of estimation of periodically correlated
processes, i.e. second order cyclostationary, was
introduced first by Hurd (1970) and exploited with
success in several domains especially in the diagnosis
of gears faults  (Capdessus, 1992; Capdessus, 2000;
Bouillaut, 2000). For higher orders, the general
theory of cyclic statistics has been developed in both
the stochastic and fraction of time (FOT) probability
frameworks. An important statistical parameter in the
study of cyclostationarity properties is the kth-order
cyclic polyspectrum. Estimators for this cyclic
polyspectrum have been proposed by Gardner
(1994a, b) and by Giannakis and Dandawate (1994)
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for continuous time and discrete time signals
respectively. In Gardner (1994a), the whole study is
based within a deterministic framework by using the
fraction of time probability. Alternatively, Giannakis
and Dandawate (1994) built estimators for real
signals in a stochastic framework. Their estimation
depends primarily on the generalisation of the kth-
order periodogram suggested by Brillinger and
Rosenblatt (1967a, b). Applications of higher order
cyclic statistical signals are limited to a few areas.
Spooner and Napolitano (2001) recently proposed an
application of cyclic analysis to the estimation of
parameters of modulated signals.

This paper addresses an application of cyclic
statistics for the diagnosis of tooth spalling in a
gearbox. This application is based on the estimation
of the third order cyclic polyspectrum, often called
the cyclic bispectrum. The paper is organised as
follows. After presenting the major definitions and
properties of cyclic statistics in section 2, methods of
estimation of the cyclic bispectrum are proposed in
section 3 To illustrate these methods, simulated
signals are used in order to compare the results to the
theory. Finally, an application to industrial vibration
signals recorded on a U.S. Navy helicopter is
provided and discussed in section 4. Conclusions are
drawn in section 5.

2. HIGHER ORDER CYCLIC STATISTICS

In this paper, the theory of Giannakis and Dandawate
(1994) will be used and reviewed in the next two
paragraphs.

2.1 Main definitions

Let us consider a cyclostationary process )(tx where
),( ττττtCkx and ),( ττττtmkx  represent respectively its kth-

order cumulant and moment with  ),...,( 11 −= kττττττ .
More details about cumulants and cyclostationarity
are given in (Lacoume, et al.,1997).

 If ),( ττττtCkx has a Fourier series representation with
respect to t , then
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The Fourier coefficients ),( τττταkxc are called the kth-
order cyclic cumulants of )(tx  and α is known as
cyclic frequency. These coefficients are time-
invariant, and thus can be estimated by using only

one realisation. Single record estimation of statistical
parameters is very significant in practice.

Kth-order cyclic cumulant spectra can be obtained by
using kth-order cyclic cumulants as follows :
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with ),,( 11 −= kff lf . Cyclic cumulant spectra can
also be called spectral multicorrelations (Lacoume, et
al. , 1997) or kth-order cyclic polyspectra. The same
procedure is applicable to the kth-order moment

),( τττταkxm .

2.2 Estimation of kth-order cyclic cumulant spectra

The Kth-order cyclic periodogram of )(tx  is defined
as:
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This cyclic periodogram )(T
kxI is non null when

 10 α=++ −kff l . For ,0=α  it denotes the
conventional multiperiodogram for stationary
processes. It is shown in (Giannakis and Dandawate,
1994)  that the kth-order cyclic periodogram is a
sample estimator of cyclic moment spectra. Such
estimators are unbiased and inconsistent but can be
made consistent by a suitable averaging. This study
will be limited for the third order, therefore
cumulants and moments are equal if the process is
centred. As a consequence, third-order cyclic
periodogram is a pure potential estimator of the
cyclic cumulant bispectrum.

3. ESTIMATION OF CYCLIC BISPECTRUM

The cyclic biperiodogram is defined as
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 If )(tx is a discrete time real process,
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The cyclic bispectrum is no more than a product of
three versions of the Fourier transform of )(tx . In a
similar manner to the classical spectrum estimation
methods, the cyclic bispectrum can be then estimated
by two families of methods: the averaged cyclic
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biperiodogram (temporal averaging) and the
smoothed cyclic biperiodogram (frequency
smoothing). These new estimation algorithms are
detailed in a recent paper (Raad and Sidahmed, 2001)

Fig. 1. Cyclic bispectrum estimation by frequency-
smoothing cyclic biperiodogram.

•  In the time-averaged cyclic biperiodogram, the
triple product is computed on many successive
lags of the data and averaged on all these lags. It
is apparent that in this method it is necessary to
correct the phase shift between lags. Indeed, for
the ith lag, the triple product has to be multiplied
by riTje απ 2 where rT is the duration of the lag.

•  For the frequency-smoothed cyclic
biperiodogram, illustrated in Fig. 1., the triple
product is calculated on the totality of the signal
and then smoothed with an appropriate
frequency smoothing window. In this paper, this
technique will be used.

To illustrate this algorithm, let us consider a bilinear
and cyclic coupled phase signal, given by :

)( 2)( 2)( 2 332211 )()()()( φπφπφπ +++ ++= tfjtfjtfj etcetbetatx     (6)

with )( and )( ),( tctbta independent and random
narrow band amplitude modulations. Phases iφ are
random and stationary. Moreover,  213 fff +=  and

213 φφφ += .

For the simulations,  15.01 =f Hz and =2 f 0.25 Hz.
The sampling frequency is equal to one. The
simulated signal consists of 512 samples. The size of
FFTs is equal to the length of the signal.

The cyclic bispectrum of )(tx  can be computed by
taking the triple Fourier transformation of the third
order cumulant ),(3 τtC x with respect to t and τ . The
detailed calculation is very long and can be reviewed
in (Bouillaut, 2000).

For 0=α , the cyclic bispectrum is reduced to
bispectrum, a peak appears for the pairs of
frequencies );( 12 ff and its symmetric
partner );( 21 ff .
The non null cyclic frequencies of cyclic bispectrum
for positive frequencies are:

�  For 1f=α , peaks are found at );( 11 ff , );( 12 ff
and );( 21 ff . Furthermore, we find a peak at

);( 13 ff and );( 31 ff .
� For 2f=α , peaks are present for );( 22 ff ,

);( 12 ff and  );( 21 ff . Furthermore, two peaks
appear for  );( 23 ff and  );( 32 ff .

� For 3f=α , peaks are present for );( 33 ff ,
);( 13 ff , );( 31 ff , );( 23 ff  and );( 32 ff .

� For 12 f=α , peaks appear for );( 13 ff and
);( 31 ff .

� For 22 f=α , peaks are found at );( 23 ff and
);( 32 ff .

� For 122 ff −=α , one peak is present for the pair
of frequencies );( 22 ff .

� For 212 ff −=α , one peak is present for
);( 22 ff .

� For 132 ff −=α , one peak appears for  );( 33 ff .
� For 232 ff −=α ,one peak appears for );( 33 ff .
�  For 12 ff −=α , one peak is found at );( 22 ff .

Fig. 2(a) shows the magnitude of the cyclic
bispectrum for the cyclic frequency 1f=α .
Obviously, peaks appear at the same positions as
indicated by the results of the theoretical calculus
presented above. Fig. 2(b) represents the magnitude
of the cyclic bispectrum for 2f=α .

(a)

(b)

Fig. 2. Magnitude of cyclic bispectrum for (a)
α=f1=0.15 Hz, (axis of f1 and f2  are normalised).
(b) α=f2=0.25 Hz.



4. APPLICATION TO REAL VIBRATION
SIGNALS

4.1 Presentation of the system

In this section, applications of the cyclic bispectrum
to an industrial system are presented. The signals
consist of vibration data recorded from the aft main
power transmission of a U.S. Navy CH-46E
helicopter. These signals, when used, are supposed to
be either cyclic or bilinear. In fact, they combines
these two properties and this is the focus of this
study. Fig.3 presents a general view of the system
The CH-46E is a twin-rotor, fore/aft transmission
aircraft powered by two turbine engines. A single
mixbox and aft main transmission were installed on a
test stand and run at nine different torque levels.

Vibration data was collected using eight
accelerometers and a tachometer. Seven types of
faults were included, along with a base test with a
fault-free transmission. Faulty components were
sequentially installed in the mixbox and transmission
Only one faulty component was present in the
assembly during any of the data collections. Some
tests involved two different instances of the same
type of fault at different levels of severity. The data
were digitised at a sample rate of 103,116.08Hz with
16-bit quantization using a 10-channel data
acquisition system.  Each signal is 412464 samples
long.

The aim of this campaign of measurement was to
evaluate diagnostic tools in general, including pattern
recognition techniques. Several methods were
applied to this data base and this gave rise to a
special issue of the MSSP (Mechanical Systems &
Signal Processing) in July 2000. For this paper,  the
study is limited to fault 4, which is spiral bevel input
pinion spalling.

A simplified version of the Westland Helicopter
transmission, including  the spur pinion and collector
gear, the common quill shaft, and the spiral bevel
pinion/gear is presented in Fig. 4. In this figure,
meshing frequencies 

imf for i=1 to 2 and shaft
rotation frequency

jrf for j=1 to 3 are indicated.

Fig. 3.  Photo of the helicopter

Fig. 4. Simplified schema of Westland Helicopter
transmission.

4.2  Application of cyclic bispectrum and results

Signals were filtered around the two meshing
frequencies with a band of 600 Hz, then transformed
to analytic signals by applying a Hilbert transform. In
the end, signals were decimated by 8. The sampling
frequency sf is then equal to 12890 Hz. Only 8192
samples of the resulting signals and frequency
smoothed cyclic biperiodogram are used for
computation. The size of FFTs is equal to 1024.

Fig. 5.  represents the magnitude of the cyclic
bispectrum of a vibration signal resulting from fault 4
(level 2 i.e. established damage) with a torque level
of 100% for a cyclic frequency 

1rf=α . Several
peaks indicating non linear or cyclostationary links
appear in the magnitude of the cyclic bispectrum. 4
peaks appear for the pairs of frequencies

 ),(  , ),(
11 33 mm ffff and ),(  , ),( 

22 33 mm ffff where =3f

2/)(
21 mm ff + .

Bouillaut (2000) has shown that when a fault appears
in a industrial gearbox, the meshing frequency

1mf modulates the meshing frequency 
2mf .

Moreover, spectral analysis shows the appearance of
a frequency 3f which was the consequence of the
link between the meshing phenomena. The
appearance of  this frequency gives  rise in the cyclic
bispectrum  to all these bilinear and cyclostationary
links between 

 21
; mm ff and 3 f . The third order cyclic

analysis therefore allows us to detect the presence of
faults in helicopter gearbox. Two other peaks appear
for the pairs of frequencies   ),( 31

ffr and  ),( 
13 rff .

These peaks underline links between the rotating
frequency and the 3f characteristic of the fault. So,
these peaks can  also be used to make a good
diagnostic of the gearbox.
Peaks are present also for the two pairs of
frequencies ),( , ),( 

2112 mrrm ffff . These peaks
indicate a correlation between these two frequencies.

Hz 5 315
2

=mf

Hz 8 110
1

=mf

Hz 5 6  . 42
1

=rf

Hz 6 12
3

=rf

Hz 6.17
2

=rf



However, it is normal that the vibration produced by
the pinion will be transmitted to the collector gear
and therefore, a correlation of lower order exists
between the meshing frequency of the collector gear
and 

1rf .

In this analysis, tests were also performed on signals
issuing from the same fault 4, but for level 1. When
observing Fig. 6.,  many peaks that denoted the
presence of the fault 4 level 2 are absent when the
signal results from a fault with a lower degree of
damage. Only three peaks exist for the pairs of
frequencies ),( , ),( 

2112 mrrm ffff  and for  ),( 
22 mm ff .

Therefore the third order cyclic statistics is not able
to predict the evolution of the fault at maximum
torque.

Fig. 5. Magnitude of cyclic bispectrum of Helicopter
signal  (default 4, level 2, torque level 100%) for
a cyclic frequency 

1rf=α , the axis 1f  and 2f are
in the range [0.. 2/sf ].

Fig. 6. Magnitude of cyclic bispectrum of  Helicopter
signal  (default 4, level 1, torque level 100%) for
a cyclic frequency 

1rf=α .

Fig. 7. Magnitude of cyclic bispectrum of  Helicopter
signal  (No fault ) for a cyclic frequency 

1rf=α .

To complete the analysis, a comparison with a
vibration signal with fault-free components is
necessary. In Fig. 7., only three peaks appear for the
pairs of frequencies (3155.5,42.6) and (42.6, 3155.5).
These same peaks were found in the case of the fault
4 level 1 but  with an increase in the amplitude of  the
peaks. This means that several new peaks do appear
for the severly damaged gearbox. The multitude of
these peaks show that the cyclic bispectrum can
provide a precise and rich information about the state
of gearbox. This information is related to bilinear and
cyclostationary links between the characteristic
frequencies shown in Fig. 4. Bilinear links are
obtained generally from the analysis of the
bispectrum (Nikias  and Raghuveer, 1987) and
cyclostationary links are provided by the analysis of
second-order cyclic analysis and especially by the
spectral correlation  (Capdessus, et al., 2000).
Therefore, the cyclic bispectrum could be used as a
combined tool for diagnosis, joining the properties of
the bispectrum and the spectral correlation.

As a conclusion for this section, this study
underlines that third order cyclic statistics will be a
useful and powerful diagnostic tool for complex
industrial systems such as the U.S. Navy helicopter
gearbox.  For an established fault, at a maximum
torque, a diagnosis based on higher order cyclic
statistics is easy to obtain, because of the multitude
of peaks that appear due to the fault. The cyclic
bispectrum provides also useful information about
bilinearities and cyclostationarities in the system. A
complete study of the effectiveness of third order
cyclic statistics when applied to gearboxes and the
influence of torque on the results will be the subject
of  a future research.

5. CONCLUSION

This paper has introduced the theory of higher order
cyclic statistics as a new tool for the analysis and
diagnostics of gears. Until now, higher order cyclic
statistics has only been the subject of a few studies.
Gardner (1994a); Giannakis and Dandawate (1994)
were the pioneers in extensively studying the theory
of cyclostationnarity and in proposing consistent
estimators to compute kth-order cyclic polyspectra.
For the second order cyclic statistics, spectral
correlation was demonstrated to be a powerful tool
for the diagnosis of gear faults in rotating machines.
For higher orders, Spooner and Napolitano (2001)
proposed the  exploitation of higher order cyclic
statistics as detectors, estimators of parameters,
separators of signals and finally classifiers of
modulation.

In this paper, the main definitions of the theory of
higher order cyclic statistics have been recalled as
well as estimators for kth-order cyclic spectra. More
particularly, methods of estimation of the cyclic
bispectrum were reviewed. These new methods were



developed in a previous paper, see (Raad and
Sidahmed, 2001). A simulation example was given to
demonstrate the performance of these new
algorithms. The originality of this paper is the
application of the cyclic bispectrum to the diagnosis
of gear faults in a complex industrial system. It
appears that the results obtained are promising, from
which, it can be concluded that third-order cyclic
statistics  is appropriate for making a good diagnosis.
Furthermore, the use of third-order cyclic statistics
can make it possible to characterise the fault, offering
insight into bilinear and cyclostationary coupling
between frequencies where traditional linear (i.e.
power spectral) analysis provides insufficient
information.
Consequently, it is not difficult to imagine a future
complete industrial application of the cyclic
bispectrum. This new tool could be used for the
diagnosis of gears faults in rotating machinery more
generally and as a complementary tool to existing
and currently available techniques.
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