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Abstract: The purpose of stochastic approximation is to find the roots of an
unknown function f(-), which can be observed, but the observations are corrupted by
errors. General convergence theorems for stochastic approximation algorithms with
expanding truncations are presented. The observation errors are allowed to include
both random noise and structural uncertainties. The conditions imposed on the
observation errors are the weakest possible, while the function f(-) is only required to
be measurable and locally bounded. Applications of the general convergence theorems
to optimization and signal processing demonstrate the strong points of results given

in the paper.
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1. INTRODUCTION

Stochastic approximation (SA) is devoted to find-
ing zeros of an unknown function f(-) which can
be observed, but the observations are corrupted
by errors. The Robbins-Monro (RM) algorithm [1]
provides the following estimate for the root of f(-):

Tyl = Tk + GkYri1 (1)
where ay, is the step size, and yx4; is the observa-
tion at time k + 1, which is given by

Yk+1 = f(zr) + e (2)
where €1 is the observation noise.

Until mid-seventies of twentieth century the prob-
abilistic method was the main approach for
convergence analysis of SA algorithms. By this

method, the linear growth rate of f(-) and in-
dependence or martingale property for the ob-
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servation noise are assumed, in addition to the
usual condition concerning existence of a Lya-
punov function, which normally has to be assumed
in all analysis methods for SA algorithms [2]. This
type of works was well summarized in [3].

Starting from mid-seventies the ordinary differen-
tial equation (ODE)} method was developed for
convergence analysis of SA algorithms {4,5] by
observing that the tail part of the interpolating
function of {z;} with step size {ax} used in the
algorithm as its interpolation length satisfies the
ODE z = f(z). However, to derive this, one has
to @ priori assume that {z;x} is bounded. This
assumption on {z;} in essence is a growth rate
restriction on f(-).

SA methods are now widely applied in system
identification, adaptive control, optimization, sig-
nal processing and other areas ( See, e.g, [6,7]
among others). However, the above-mentioned re-
strictions limit its further applications. To im-
prove its applicability, the expanding truncation



technique was proposed in [8], and further devel-
oped in [9], [10], where the algorithm is analyzed
by the trajectory-subsequence (TS) method, i.e.,
the analysis is carried out at a fixed trajectory
along convergent subsequences.

In this paper the convergence theorems for SA
algorithms with expanding truncations are pre-
sented. Then the method is applied to solve prob-
lems arising from optimization and signal process-
ing.

2. SA ALGORITHM WITH EXPANDING
TRUNCATIONS

Let f(-) be an IR® — IR' function with root
set J = {z € R : f(z) = 0}. Let {M}
be a sequence of positive numbers increasingly
diverging to infinity, and let z° be a fixed point
in R!. Fix an arbitrary initial value =z, and
denote by z; the estimate at time k serving as
the kt* approach to J. Define z; by the following
algorithm with expanding truncations:

Tier1 =(Tk + @Ykt ) za+arper | <M., ]
+ 2% [zt anpas 1> Moy ) (3
k-1
Ok = ZI[||$i+aiy.'+1H>Ma,-]’ 00=0, (4)
i=1
Ye+1 = f(zr) + €xt1, )
where I[;nequatity) is an indicator function meaning
that it equals 1 if the inequality indicated in the
bracket is fulfilled, and 0 if the inequality does not
hold.

We explain the algorithm. o4 is the number of
truncations up-to time k. M, serves as the trun-
cation bound when the (k + 1)th estimate is gen-
erated. From (3) it is seen that if the estimate at
time k+1 calculated by the RM algorithm remains
in the truncation region, i.e., if ||zx + aryr+1]| <
M,, , then the algorithm evolves as the RM algo-
rithm. If (zx + aryx+1) exits from the sphere with
radius My, , ie., if ||zx + aryr+1ll > Mo, , then
the estimate at time &k + 1 is pulled back to the
pre-specified point z°, and the truncation bound
is enlarged from M,, to M, ,. Consequently , if
it can be shown that the number of truncations is
finite, or equivalently, {zx} generated by (3)—(5)
is bounded, then the algorithm (3)~(5) turns to
the RM algorithm in a finite number of steps.

Before establishing convergence of zg, it is even
unknown if z; is bounded or not. So, in the case
where €;41 depends on z;, j < k (state-dependent
noise), it is difficult to analyze the properties of
{ek+1} along the whole sequence {z;}. The noise
conditions required here are needed to be verified
only along convergent subsequences of {z}, and
the analysis is carried out at a fixed trajectory

(sample path). This is why we call it as TS
method.

We first list conditions to be used.

o0

3 ap =00

A2 There is a continuously diﬂ'er’:anltiable func-
tion (not necessarily being non-negative) v(:) :
IR' - R such that

sup  fT(z)vz(z) <O (6)
§<d(z,J)<A

for any A > § > 0, and v(J) & {v(z) : z € J}
is nowhere dense, where J is the zero set of
f0), le, f(z) =0,Vz € J,d(z,J) = inf{||z —
yll : v € J} and v,(-) denotes the gradient
of v(-). Further, 20 used in (3) is such that
v(z) < inf)g=c, v(z) for some ¢ > 0 and
llz°l] < co.

Al a; >0, ar—— 0 and
k—c0

For introducing condition on noise let us denote
by (2, F, P) the probability space. Let €x4+1(,*) =
(R' x Q,B' x F) - (IR x B") be a measurable
function defined on the product space. Fixing
a w € Q means that a sample path is under
consideration. Let the noise €x+; in (5) be given
by
€kt1 = €xp1(Th,w), wE N

Thus, the state-dependent noise is considered, and
for a fixed z, €x+1(z,w) may be random.

A3 For the sample path w under consideration
for any sufficiently large integer N(> Ng)
m(ng,tr)
im Ii = e )
lim limsup 2| =Z ai€ip1 (#:(w), w)

Vir € 10,8 (7)

for any {ni} such that z,, (w) converges, where
z;(w) denotes z; given by (3)—(5) and valued at
the sample path w and

Tjzs<mll =0,

m(k,t) = maz{m: iai <t} (8)
i=k

A4 f(-) is measurable and locally bounded.

In the sequel, the algorithm (3)—(5) is considered
for a fixed w for which A3 holds, and w in z;(w)
is often suppressed if no confusion will be caused.
It is worth noting that an, €n, +1 = 0if {z,, }

converges. To see this it suffices to take t; = an,
in (7).

Theorem 1. Let {z} be given by (3)-(5) for a

given initial value zo. Assume A1-A4 hold. Then,

d(zy, J*) - 0 for the sample path w for
—00

which (7) holds, where J* is a connected subset
contained in J, the closure of J [9,2]. <

If for the conventional (untruncated) RM algo-
rithm



Yk+1 = f(zx) + a1 (9)

it is e priori known that {zx} is bounded, then
we have the following theorem.

Tp+1 = Tk + QrYk+1,s

Theorem 2. Assume Al-A4 hold, where in A2
“Further, z° used in (3) is such that v(z) <
inf)j3|j=c, v(z) for some ¢o > 0 and ||2°]| < co”
is deleted. If {zx} produced by (9) is bounded,
then d(zg,J*) ——) 0 for the sample path w for
which A3 holds, where J* is a connected subset
of J. o

We now give convergence theorems under con-
ditions with no {z;} involved. For this we first
reformulate Theorem 1.

In lieu of A3 we introduce the following condition.

A5 For any sufficiently large integer N(> Ny)
there is a w—set Qx with PQxy = 1 such that
for any w € Qn

m(nk,tk)
hm hm Sup _'” Z a;€i1(zi(w), w)
z_nk
Tiecwyi<mll =0, Vir € [0,2)

for any {nx} such that {z,, } converges.

(10)

Theorem 3. Assume Al, A2, A4 and A5 hold.
Then d(zk, J*) - 0 a.s. for {z} generated
—o0

by (3)-(5) with a given initial value zo, where J*
18 a connected subset contained in J, the closure
of J. <

We now introduce a state-independent condition
on noise.

A6 (ex(z,w),Fr) is a martingale difference se-
quence for any z € IR!, and for some p € (1,2]

E(||lex+1(z, w){|P|Fe) 2 orr1(z) < 00, a.s. Vo,
(11)

sup sup ak+1(z)éa(N) < oo, VN, (12)

k Jzli<N
where {Fi} is a family of nondecreasing o-
algebras independent of z.

Theorem 4. Let {zx} be given by (3)-(5) for a
given initial value. Assume Al, A2, A4 and A6
hold and ) o, af < oo for p given in A6. Then
d(zy, J*) m 0 a.s., where J* is a connected

subset contained in J. <

In applications it may happen that f(-) is not
directly observed. Instead, the time-varying func-
tions gi(-) are observed, and the observations yj11
may be made not at z, but at zx + i, i.e., at zx
with bias r,

Y1 = gk (Tk + Tk) + exp1(zh +11,0).  (13)

Theorem 5. Let {zx} be given by (3)-(5) for a
given initial value. Assume that Al, A2, A4 and
A6 hold and ;- af < oo for p given in A6.
Further, assume (ry, Fi) is an adapted sequence,
{rx} is bounded by a constant and for any suf-
ficiently large integer N(> Np) there exists Qy

with PQly = 1 such that for any w € Qn
m(nk,tk)
lim lllIcILSUp " i=znk ai(gi(z; +1i) — f(zi))
'I[HE-'IISN]” =0, Vi€ [0, t].
(14)

for any {nz} such that {z,,} converges. Then,
d(zg, J*) k—) 0 a.s., where J* is a connected
00

subset contained in J. o

3. OPTIMIZATION BY SA

Let L(-) be an unknown R' — R function. Based
on the noisy measurements of L(-) the well-known
Kiefer-Wolfowitz(KW) algorithm [12] is used to
find the local maximizers of L(-). In order to
reduce the number of observations at each step the
algorithms with randomized differences are intro-
duced [13, 14]. For the conventional KW algorithm
2] measurements at each step are needed, while for
the algorithms with randomized differences only 2
measurements per step are used.

In contrast to [15], here the measurement noise
at time k + 1 is allowed to depend on the points
(zr + crAg and zx — ¢ Ak to be explained below)
where the function L(-) is observed.

At each iteration, two measurements are taken:
Yirr = L@k + i) + &,y (Th + celDg, w) (15)

Yir1 = L(zk — ckAx) + &5, (Tk — cxAg,w) (16)

where A £ [AL,...,AL]T is defined as follows:

(ALyi =1,...,l, k = 1,2,...) is a sequence of
mutually independent and identically distributed
random variables with |AL} < a, |1/AL| < b and
E(1/Ai) =0forallie {1,...,1}, k=12,..,
where a and b are positive rea.l numbers.
(ALi=1,...,l,k=1,2,...,) is independent of
both sequences {& (z,w)} and {£; (z,w)}, Vz €
R.

It is important to note that both £, ; and §;’+1
depend on Aj.

Define - )
Yerr ~Yer1) o1
=—T """ A 1
Yr+1 2ck k ( 7)
Err1 = &1 (zh + crBr,w) — 5 (T — CrAk,w),
(18)
-1 A
where A1 = [K]{’ ceh Kl[]T‘



Let {z} be still defined by (3)-(5) but with yg41
given by (17).

We need the following conditions:

H1 The function VL = f is locally Lipschitz
continuous. There is a unique maximum of L
at 20 so that f(z°) = 0 and f(z) # 0, Vz # z°.
There is a ¢g > 0 such that ||z°|| < ¢ and
SUD|jp=co L(2) < L(2%) where 20 is the one
used in (3)

H2a; > 0, ¢, > 0, ¢g — 0 as k& = oo,
3 4o, ar = oo and there is a p € (1,2] such
that 3.2, (%)P < oc.

H3 Both & (z,w) and & (z,w) are measurable
functions: (R' x Q,B' x F) — (R,B), Vk,
satisfying the following conditions

61:_(1'1“))6]:1:1 g;(x’w)efk>
E(§:+1(IE, (d)']:k) = 01 E(£;+1 (z’w)lj:k) = 0$
Vz € R

E(& 1 (2, )P F) 2 a3t 1 (2) < 00,

E(||ér,1 (2, 0)IP|1Fi) & a1 (2) < 00,

S%p ! Sllllp [ak+1(z) +044 (@) = O'(N) < 00,

VN, (19)

where {Fi} is a family of nondecreasing o-
algebras independent of both z and {Ai,i =
LLE=1,2,. .}

Theorem 6. Assume H1, H2 and H3 hold. Then
{z+} defined by (3)-(5) with yx41 given by (17)
converges to z° a.s.

4. ADAPTIVE FILTERING

Let {X,} € R" and {s,} € R be the measured
input and reference signal, respectively. Assume
[8n, XT]T is stationary. The vector H is adaptively
adjusted so that HT X, best matches s, in a
certain sense. If the cost function L(H) to be
minimized is E|s, — HT X,|, then the following
sign-algorithm
1

ar = +

(20)
is used to estimate the minimizer of L(H). If the
cost function L(H) = E|s, — HT X,|?, then the
following algorithm

Hyy1 = Hi + anXi(sk — HY Xi)  (21)

Hy1 = Hy + ap Xgsign(sy — HY X4),

has extensively been studied.

According to (3)—(5), instead of (20),(21) we con-
sider the corresponding versions with expanding
truncations.

Take {My}, My > My_1, Yk, My = ccask — oo.
The algorithms (20), (21) are modified to (22),
(23), respectively
Hyp1 =(Hy + ap Xysign(sx — HY X&)
T H+ar Xysign(se—HT Xi)I<M,, ) (22)
k-1 1
Tk = Z I{IIH-'+a(X.-sign(s;—H;’X;)||>M,,|.},
i=1
and
Hipr =(Hy, + ax Xi(sk — Hi X))
L Bt ar X (s~ HT X)lI< Mo } (23)
k-1 1
0k = 3 HtoXio-HT XI5 Mo b Ok = %

i=1

akZE

Notice that 20 in (3) is now set to be zero in (22)
and (23).

Theorem 7. Assume [sx, XT)T is stationary and
ergodic such that

E[jél] [s1XT] > 0.

Then as k — oo, d(Hg,JJ) = 0 a.s. for Hy defined
by both (22) and (23), where J denotes the set of
minimizers of E|s; — HT X, | for (22) and E|s; —
HT X, |? for (23). o

It is clear that to minimize L(H) = E(s; —
HTX,)? is equivalent to finding the roots of its
gradient

f(H) = EXT(s; — HT X3).

Therefore, the corresponding RM algorithm should
be

Hipn = Hy —apE(X1(s1 — H{ X1))  (24)
(= Hi — ax f(Hk))-
Comparing (24) with (21) we rewrite (21) as
Hk+1 = Hi — akf(Hk) + Qp€r41, (25)
where

ext1 = Xi(sk — HY X)) + E(X1(s1 — HT X1)).
(26)
Thus, (25) is a RM algorithm with observation
noise (26), which is state-dependent. The similar
situation takes place when minimizing E|s, —

HT X,,|, for which

f(H) = E(X;sign(s1 — HT X))

and
exr1 = Xpsign(sp—HT Xi)+E(X;sign(si—HT X1)).

The proof of Theorem 7 consists in verifying con-
dition A3, applying ergodicity of the stationary
process (s, XT')T. Then the assertions of the the-
orem follows from Theorem 1. For details we refer
to [16]). Comparing Theorem 7 with results given
in [17] we find that conditions used in [17] have
greatly been weakened.



5. BLIND CHANNEL IDENTIFICATION

Consider a system consisting of p FIR channels
with L being the maximum order of the channels.
Let sz, k=0,1,2,--- N, be the one-dimensional
input signal, and z (a;k ,mf), o, T 2”))71
k=L,L+1,---,N, be the p-dimensional output
signal, where N is the number of samples and may
not be fixed, the superscript (¢) denotes the ith
component, and the subscript & is the time index.
Then

L
ok = hisk-i, k> L, (27)
i=0
where
hi = (A, P
Equation (27) can be written as

D = KD (2)ss, (28)

where
R A0 B2+ 4B, i=1,..,p,
(29)

with z being the shift operator:

28k = Sg—1-

The observations y; may be corrupted by noise
Ng:

Yk = Tg + Ng,
where n; is a p-dimensional noise vector. The
problem is to estimate h;, i = 0,---,L, on the
basis of observations {yx}. Note that sg, zx, nz,
and y;, can be complex numbers.

The channels can be characterized by a p(L + 1)-
dimensional vector hC. First we define

B@ = (h(’) ’h(Li))T,
then let

RO = [(h(l))T’... ,(h(p))T]T' (30)

Denote
0 = [0 2] o) = [0 efl
) 121,"';1):]‘:221’5

where y( ) and :vgf) are the ith component of y

and xx, respectively.

(From (28), we have

h(i)(z)a:ij)
=D (2)hD (2)sx = hD (2)hD (2) 85 = AP (2)z?,
Vi,j=1,...,p,k=2L,2L+1,.... (31)

Using the observed data (yx or z in the noise free
case), the above set of equations can be written
in a matrix form [18§]

Xph0 =0, (32)

where X, is a (N — 2L + 1)[p(p — 1)/2] x [(L +
1)p] matrix, and N is the number of samples.

In all existing results the “block algorithm” is
used, where the channel coefficients are estimated
after the entire block of data have been received.
In contrast to this, by using the SA method we
propose adaptive algorithms in which estimates
for h° are obtained at every step k = 2L,2L +

-, N, by updating the estimates obtained at
the previous step.

First, we define two ﬂ”z;ll x p(L + 1) matrices
denoted as ¥y and P;:

W 0 o]
W0 o
déﬂ) dé?) 0 --- 0 ¢#U
0 9P ¢ 0 0

Uy = : A ,
0 W 0 0
Lo o o0 P gV

(33)

Note that X, in (32) is (N — 2L + 1) times as
large as ‘Ilsc’). We define ®; as the matrix that

has the same structure as (33) with zp}j) replaced

by cpg) Vi=1,2,---,p. U (or ®) contains the
observation zj in the noise-free case (or y; for
noisy observations) in a window of size L + 1 back
from time instant k (i.e., k,k—1,--- ,k—L); these
are the observations that are related to signal
sk—r - It is worth emphasizing that neither ¥, and
®;. depend on N in contrast to Xr..

Let {ax} be a sequence of step sizes to be specified
later. Let ||h(2L — 1)|| < & and estimate A® by the
following truncated SA algorithm:

h(k+1)
=(h (k) — ar (P11 Pks1 = ENZ 1 Niewa) e (K))
“d(| (k) —an (5, Vit 1= BN}y Nis1)1<1]
+ h(2L = DIjjjn(k) - ai (%1, , Was1 ~ BN, Nean)l1>1]>
(34)

k41
k=2L,2L+1,--,

where the superscript * denotes transpose with
complex conjugate, and Ny = ¥, — &, k =
2L,2L+1,---

We will use the following conditions.

C1 hi(z), i =1,---,p, given by (29) have no
common factor.
C2 a,>0, ap1<ar VE=12--, ap =
k—oo
0, Yp,ax = oo, =2 < ¢ Vk with ¢

k41



1
ooa+%

being a constant and )_;°, ;" * < oo, where

7 is given in C3.

C3 {si} and {n} are mutually independent and
each of them is a sequence of mutually indepen-
dent random variables such that E|s;|? # 0,
and

sup {[sz] + |nx|} < n < o0, En**7 < .
k

C4 Amin(4, k) > A > 0, Vj > 0, Vk > 0, where
Amin (4, k) is the minimal nonzero eigenvalue of
Bj i, where

JHGR+1)(2L+1)—1

B 2 S

i=j+k(2L+1)

E®;%;, Vj>0,

(35)

Theorem 8. Assume C1-C4 hold, and h(k) is
given by (34) with initial value A(2L —1). Then af-
ter a finite number of steps there is no truncation
in (34) and

h(k) — ah®, a.s.
k—00

where o is a random variable. o

Note that h® = h%/||h°|| is the unique unit
eigenvector for B, Vj > 0,Vk > 0, and (34) is
a SA algorithm but with time-varying regression
function. For the proof we refer to [19].
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