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Abstract: This paper discusses the issue of precision-limit positioning of a direct drive 
system with the existence of friction. By precision-limit positioning we mean that, in 
addition to the common sense of sub-micro, nano, or pico precision, the precision error 
equals to the resolution of the position sensor used in the feedback loop. This means a 
zero-count precision error when a digital type position sensor is used. Precision-limit 
positioning also enforces 100% repeatability as precision is concerned. Of course, this is 
the limit of the precision that a real control system can achieve. Traditionally, this kind of 
performance was not considered possible mainly for lacking accurate and enough 
information about friction, especially the static friction. However, as more and more 
knowledge of the pre-sliding motion has been revealed, it is shown in this research that 
such kind of performance can be achieved. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
High precision positioning is an important issue in the 
fields of manufacturing, assembly and measurement. 
In this research, the precision-limit positioning of 
direct drive systems under no or constant load is 
studied. By precision-limit positioning (PLP) we 
mean that, in addition to the common sense of high 
precision requirement, the precision achieved is the 
limit that the particular system hardware can achieve. 
Of course, there are lots of factors that influence the 
precision limit, such as the resolution of the input 
force, the resolution of the position sensor, and so on. 
In this research, the precision limit is defined to be 
the resolution of the sensor that is used for position 
feedback. It is under the assumption that all other 
parts of the system are capable of achieving the goal 
of PLP. We further restrict ourselves to the case that a 
digital type position sensor is used. In this case the 
precision error should be zero-count error. It is also 
noted that to make zero-count precision error a 
meaningful statement, the precision should be 100% 
repeatable. This is quite different from what is 
encountered in existing commercial systems. The 
reason we ask for PLP is two folds: (i ) academic 
curiosity and (ii) cutting down the cost of an ultra 
high precision positioning system.  

 
Of course, PLP was not deemed possible in a 
common sense. This was mainly because we lacked 
enough knowledge about friction and the induced 
non-linearity. This ignorance is even worse for the 
case of static friction. To overcome the problem 
caused by friction, the industry uses brushless motors, 
air-bearings, magnetic bearings and other special 
designed bearings to get rid of friction. Despite the 
high cost of the special equipment, the theoretical 
precision limit for such kind of systems is 1±  count. 
This implies 3 times the precision error of 0±  count 
case. To get same level of precision, a sensor with 
triple precision should be used. This, of course, 
increases the cost tremendously for a high precision 
system. 
 
Instead of using expensive hardware, researchers in 
the control field have been working on complicated 
control laws to compensate the influence of friction. 
However, the very fundamental purposes of these 
efforts are to improve the precision performance. 
None of them tried to claim to achieve zero-count 
precision error with 100% repeatability. However, 
some works do obtain zero-count precision error in 
the reports they published (Futami, et al., 1990; 
Yamaguchi, 1990; Jeon, et al., 1997; Huang, et al., 
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1999; Yen, et al., 1997). A common point of these 
controls is that no matter what kind of algorithms 
they claim, there is always an integral feedback 
embedded in the design. In fact, it is a common 
practice to include an integral part in a positioning 
system. However, the importance and contribution of 
this integral control is ignored in all these works. As a 
matter of fact, based on the traditional Coulomb 
friction model, it can be proved theoretically that a 
single integral control alone cannot stabilize a direct 
drive system.  
 
In this research, it is proved that, with the new 
knowledge of pre-sliding dynamics revealed, the 
integral control or equivalent is necessary for 
obtaining PLP, and an integral control alone can 
stabilize the system in the pre-sliding phase. Some 
practical issues of PLP are also addressed. This 
includes how to select an appropriate D/A converter. 
The derivation presented in this paper is mainly based 
on the authors’ earlier work on pre-sliding behavior 
(Hsieh and Pan, 2000). Readers interested in static 
friction and positioning problems are encouraged to 
read the paper. 
 
The block diagram of the system used in this research 
to conduct experiments is shown in Fig. 1. The plant 
is a direct drive DC torque motor mounted on 
ordinary ball bearings. The motor is driven by a linear 
amplifier. Two optical encoders with different 
resolutions are mounted to measure the rotor position. 
The resolution of the coarse one is 86,400 count/rev 
or, equivalently, 15 arcsec/count, while that of the 
fine one is 1,620,000 count/rev or, equivalently, 0.8 
arcsec/count. The rotor angle is measured 
simultaneously by these two encoders. The outputs 
are compared to guarantee that the data obtained is 
correct. The data acquisition and control is 
accomplished by a PC-486/66 together with a D/A 
converter and an A/D converter. Both D/A and A/D 
converters have a resolution of 12 bits.  
 
In the next section, the pre-sliding friction behavior 
will be described. Its influence on the position control 
will also be discussed. A simple and explicit stability 
criterion for fine positioning using PID control is 
given in section 3. Some practical issues are also 
addressed in this section. Section 4 contains the 
experimental results and is followed by the 
conclusion. 
 
 

 
2. PRE-SLIDING BEHAVIOR AND ITS 

INFLUENCE ON THE POSITION CONTROL  
 

The traditional friction model is the well-known 
Amonton-Coulomb friction model. According to this 
model there is no displacement in the static friction 
range. Hence, it is usually modelled as a dead-zone 
non-linearity in control design. This assumption is 
appropriate from the macroscopic point of view. 
However, in 1899, Stevens, with the help of an 
interferometer, found that elastic displacement does 
exist before the normal slip occurs. This small 
amount of displacement can indeed be ignored if the 
precision requirement is not high. However, it 
becomes the vital factor when we are talking about 
high precision positioning. Since, in this case, the 
range of pre-sliding motion is usually greater than the 
precision requirement by an order of at least 2. The 
pre-sliding dynamics can be summarized as follows. 
 
Quantitative properties: 
 
(QN1) The parameters of any friction model are both 
time varying and position varying. It is well known in 
the field of tribology that it is hard to get repeated 
friction data. This is true even for well-prepared 
metal-to-metal friction experiments (Courtney-Pratt, 
1957), and not to mention what happen in commercial 
machines. This property is one of the main reasons 
that people believed that it is impossible to get zero-
count precision error with 100% repeatability. 
 
(QN2) It is temporarily time-invariant and locally 
position-invariant. By temporarily time-invariant we 
mean that the parameters remain constant during a 
short interval of time. This short interval is, however, 
long enough for ordinary control purposes. By locally 
position-invariant we mean that the parameters 
remain unchanged if the system stays in the pre-
sliding range of any individual point. This is a very 
important property. Just because of this property, we 
can discover the following consistent and repeatable 
qualitative properties. Furthermore, when we make up 
a model to match these properties, the parameters of 
this model can be treated as constants with “time-
invariant” uncertainties. From the control point of 
view, it is then possible to obtain zero-count precision 
error with 100% repeatability. It should be noted, 
however, this does not mean that we can achieve 
100% repeatable transient response.  
 
Qualitative properties: 
 
The pre-sliding motion consists of two kinds of 
motion. 
 
(QL1) Non-linear spring deformation. This motion 
demonstrates a special Preisach hysteresis. This 
hysteresis demonstrates memory and wiping-out 
effect of reverse points and congruency in both input- 
and output-wise. 
 

 
 
 
 
 
 
 
 
Fig. 1. The test platform 
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(QL2) Plastic deformation. This motion demonstrates 
creep and work hardening. 
 
Based on these properties, a friction model is 
introduced by Hsieh and Pan (2000) and is shown in 
Fig. 2(a). This model consists of 4 elements - a plastic 
module, a non-linear spring module, a viscous 
damper and a hook. These elements are massless and, 
hence, do not really exist. They are phenomenological 
elements. Each element exhibits a special mechanical 
property and is described by a simple mathematical 
expression. The combined result is proved to match 
all the pre-sliding behaviour. The hook at the left end 
sticks at the position where it is if the internal force is 
less than the breakaway force, i.e., the maximum 
static friction. Once the hook starts to move the 
tangential contacting force between the hook and 
ground can be described as a function of velocity. 
This kind of function describes the dynamic friction 
and has been proposed by many investigators. As pre-
sliding motion is concerned, the model is reduced to 
Fig. 2(b). The damper c is a standard linear damper 
and the non-linear spring module and plastic module 
are described below. 
 
Non-linear spring module: Consider the non-linear 
spring shown in Fig. 3. Let sσ  be the applied external 

force and sx  be the elongation. The sx - sσ  relation 

consists of a special Preisach hysteresis as described 
in property QL1. The constitutive equation of each 
branch of the hysteretic motion can be expressed as 

rxsx
21

s

s ekk
dx

d −β−+=
σ

                      (1) 

where 1k , 2k  and β  are positive scalars and rx  is 
the reversal point of the associated branch of motion. 
It is noted that to get complete information of non-
linear spring, we have to know the history of rx . The 

discussion of rx  is beyond the scope of this paper 
and is omitted here. A typical response of the non-
linear spring is shown in Fig. 4. If we treat the 
hysteresis as a spring then the right-hand-side of (1) 
can be considered as the spring constant. It varies 

from 1k to 21 kk + . For very small displacement, the 
non-linear spring can be linearized as a linear spring. 
 
Plastic module: Consider the plastic module shown in 
Fig. 5. Let σ  be the applied force and px  be the 

extension, then the relation between σ and px  can be 

expressed as 
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where α  and λ  are positive scalars and 1n > . In this 
model, hx  is monotonically non-decreasing and 

stands for the accumulated work hardening and px  is 

the final plastic deformation. It is noted that when 

h
n x/ >λσ , new plastic deformation occurs. This 

deformation is slow as compared with that of the non-
linear spring module and is called creep motion. On 

the other hand, if h
n x/ ≤λσ , there is no new 

deformation. The module is work hardened. A typical 
response of the plastic module is shown in Fig. 6.  
 
The pre-sliding motion is a combined result of these 
modules according to the relation shown in Fig. 2(b). 
In a further study, it is shown that the parameters of 
these models are force-rate independent. 
 
We now consider the position control of a typical 
direct drive  system. The governing equation is 

fs uxcxm τ−=+ &&&                             (3) 

where fτ  is the friction force, u is the control input 

and sc  is the damping coefficient in the slip phase. 

We note that, based on the Amonton-Coulomb 
friction, when u is less than the maximum static 

 
 
 
 
 
Fig. 3. Non-linear spring module 
 
 
 
 
 
 
 
 
 
Fig. 4 Typical response of the hysteresis non-
linearity of the non-linear spring module 
 

 
 
 
 
 
 
Fig. 2(a). Model of friction  
 
 
 
 
 
 
 
Fig. 2(b). Static friction model 
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friction then fu τ=  and any point )0x,x( =&  in the 

state space is an equilibrium point. Therefore, the 
control u can be eliminated as the desired position is 
reached. However, this is not the case in a real system.  
The real scenario is as follows. The control force u 
becomes small as mass m gets close to the desired 
position. The system finally gets stuck due to static 
friction. The point it sticks is usually not the desired 
point. The system behaviour switches from that 
shown in Fig. 2(a) to 2(b). As the plastic module gets 
work hardened, the system’s behaviour is very close 
to that of a mass-spring-damper system. Therefore, to 
stay at the desired position, say dx , a final holding 

force to compensate the spring force is required. If 
this force is removed, the mass bounces back and 
leaves the desired position due to the retraction of 
non-linear spring. This fact justifies the necessity of 
an integral type control in PLP systems since a 
nonzero holding force is a typical property of this 
kind of control. This also explains why in those works 
mentioned earlier showing zero-count precision errors 
in their experiments always have an integral part 
embedded in their feedback loop.  
 
It is clear now that system (3), in fact, consists of two 
different systems: a type-1 slip system and a type-0 
stick system. Since the two systems are so different, it 
is natural to take different control strategies for 
different phases. This dual mode control philosophy 
has been adopted in many research works. The 
control design for coarse positioning in the slip phase 
has been well developed. In the next section we will 
concentrate on the fine positioning in the stick phase. 

 
 

3. STABILITY CRITERION OF PID CONTROL IN 
THE PRE-SLIDING RANGE 

 
As discussed in the last section, an integral type 
control is necessary for a PLP system. Therefore, in 
this research we restrict the control structure to be a 
simple PID control. Though the concept of pre-sliding 

motion as represented by Fig. 2(b) is simple, the 
combined dynamics and non-linearity embedded in (1) 
and (2) still make it difficult to analyze the complete 
system mathematically. As a first try, we neglect the 
plastic module in the friction model to simplify the 
analysis. This is a mild assumption because of two 
reasons. First, the creep motion is much slower than 
the non-linear spring deformation. As will be 
discussed later, the main influence of it is to postpone 
the time required to achieve 0-count error; the system 
may stay with 1-count error for a period of time due 
to creep effect. Secondly, as long as the control 
remains in the pre-sliding phase, the plastic 
deformation will finally disappear due to work 
hardening.  
 
With this assumption, the governing equation for each 
branch of motion in the fine positioning phase 
becomes 

τ∫−−−=σ++ d ekekek)x(xcxm t 
0 IDPs &&&&       (4) 

where dxxe −= , and the relation between sσ  and x 

follows (1). Differentiate (4) and express it in the 
state space form we have  
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where [ ] [ ] T 
d

T 
321 xxxxzzzz &&&−≡≡ . It is 

noted that the hysteresis non-linearity of the non-
linear spring is a system with varying state dimension. 
(Hsieh and Pan, 2000) More specifically, those 
reversal points sx r  that have not been wiped out 

form part of the system state. This is quite different 
from other existing friction models. Standard 
Liapunov theorem cannot be applied to this system. 
To analyze the stability of such kind of systems, we 
treat system (5) as a switched system, a system that 
switches among an infinite set F of subsystems, 

}Rx),z(gzP{F r ∈== & . It is obvious that 0z =  is 

the only equilibrium point for all FP ∈ . This is an 
autonomous continuous switched system. Since the 
spring constant is lower and upper bounded by two 
constants 1k and 21 kk + , Pan et al. (2001) have 

proved that the system (5) is globally asymptotically 
stable about the desired point dx  if the following 

condition is satisfied. 
( )( )

m

kkkc
kk p1D

II

++
=<                   (6) 

The proof is based on the Liapunov direct method and 
LaSalle theorem modified for switched systems that 
have an infinite set of subsystems.  
 
From Liapunov indirect method we can further prove 
that the system is unstable if  
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Fig. 5. Plastic module  
 
 
 
 
 
 
 
 
 
Fig. 6. Typical response of the plastic module 
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If III kkk << , the system has higher and higher 

possibility to become unstable as it approaches Ik . 

From the design point of view, condition (6) should 
be satisfied. It is interesting to note that a pure 
integral control cannot stabilize system (3) in the slip 
phase. However, it can stabilize the system in the pre-

sliding phase as long as 
m

ck
k 1

I < . 

 
To obtain PLP, the following practical issues should 
be noticed. 
 
Practical issues in a PLP system: 
 
1. 1k , same as other friction parameters, is position 

varying. To get a robust design and hence 100% 
repeatability of precision, the 1k  used in (6) must 

be the lowest non-linear spring constant over the 
region of working area.  

 
2. Though 1k  is the lower bound of the non-linear 

spring constant, it is still very large. For example, 
it is 110Nm/rad for the system used in this 
research. Therefore, to get fast response, the 
integral gain Ik  used in the fine positioning phase 

can be quite large. However, if the same gain is 
used in the slip range, it will destabilize the 
system.  

 
3. The hard non-linear spring also implies that the 

bandwidth in the pre-sliding phase is much larger 
than that of the slip phase. For example, the 
bandwidth of the current system is about 198 Hz 
in the pre-sliding phase. This is unusual in an 
ordinary mechanical system. 

 
4. Suppose x∆  is the resolution of the digital sensor 

used in the loop for position feedback, and u∆  is 
the resolution of the control input. Then, a change 
of one unit of the input force will make m to move 
a distance bounded by 1k/u∆ . To get 0-count 

precision error we must have xku 1∆<∆ .  

 
5. When a digital sensor is used in feedback loop, it 

is not feasible, at the final stage of positioning, to 
obtain the velocity using difference method. The 
derivative part of the PID control should be 
avoided in the very final stage. 

 
6. In the above analysis the creep effect is omitted 

mainly because of the assumption that creep 
motion is much slower than the non-linear spring 
deformation. From real-time tests, this assumption 
is acceptable. In fact, the main consequence of 
creep motion is to cause jerks with a magnitude of 
1 count in the final stage of positioning. As 
discussed before, we have to include an integral 
control to get zero-count precision error. In most 
cases, when the desired position is achieved, a 
final holding force exists to get balance with the 

non-linear spring force. This holding force will 
then induce creep motion until the work hardening 
process is completed. The digital sensor cannot 
detect this creep until it is large enough to get into 
the range of next count. When this happens, the 
magnitude of the integral control is decreased by 
an amount of IDk2  in two consecutive sampling 

instants. The non-linear spring retracts 
immediately and the sensor shows the count dx  

again. This process is repeated until the work 
hardening is completed. According to the friction 
dynamics described in section 2, the jerks can 
happen in only one direction and coincide with the 
direction of the final holding force. Furthermore, 
since creep slows down gradually, the frequency 
of jerks slows down gradually too. 

 
 

4. EXPERIMENTAL RESULTS 
 

In this section, the results demonstrated is to verify 
the theories derived for stability and steady state error 
of the fine positioning. The coarse positioning and 
transient response are not the issue. Only fine encoder 
is used in the feedback loop. The whole control 
process is confined to the pre-sliding phase, and the 
control is a single integral control. The integral 
feedback is realized using trapezoidal rule. Interested 
readers are referred to Lin, et al., (2001) for more 
control cases. 
 
First of all, the bounds of the non-linear spring 
constant are estimated according to the process 
described in Hsieh and Pan (2000). The lower bound 

1k  is estimated to be rad/Nm110 , and the upper 

bound is rad/Nm860kk 21 =+ . 

 
With the fine encoder being considered, we have 

Nm1027.4xk 4
1

−⋅=∆ . The resolution of input 

torque of our system is Nm104.2u 4−⋅=∆ which is 
smaller than xk1∆ . Therefore, this torque resolution 

is fine enough for sensor-accuracy positioning. The 
moment of inertia M of the rotor is 

24 mKg1054.5M ⋅⋅= − . The damping coefficient is 

estimated to be c=0.2Nm/rad/sec. The highest natural 
frequency of the system is approximately 

( ) 2/1
21n M/)kk( +=ω =198Hz. The sampling rate 

of our control system is 2k Hz, ten times nω .  

 
From (6) and (7) the system is stable if 

count/Nm15.0M/ckkk 1II ==≤ and unstable if 

count/Nm2.1M/)kk(ckk 21II =+=≥ . The 

corresponding gain for digital control is 

count/Nm1085.3k 5
ID

−⋅=  and 

count/Nm1001.3k 4
ID

−⋅= , respectively. 

 
Three different gains are tested for stability. 



 

     

(a) count/Nm1085.3k 5
ID

−⋅= . In this case, 

IDID kk = . The system is stable in all tests as 

predicted by the theory. Fig. 7 shows the results of 
10 successive experiments with the desired 
position starting from 1 count to 10 count. They 
all achieve zero-count error. Fig. 8 shows the 
results when a desired position of 30 count is 
commanded. The jerks created by creep motion 
appear. The direction of jerks coincides with the 
direction of final holding force. It is clear that the 
frequency of jerks slows down gradually. 

(b) count/Nm1045.9k 5
ID

−⋅= . In this case, 

IDIDID kkk << . It is stable in some cases, but is 

unstable in most cases. To stabilize the system, we 
add a proportional control with 

count/Nm1021.6k 4
p

−⋅= . In this case, stability 

criterion (6) is satisfied again. The system 
becomes stable in all the cases we tested. The 
responses are much faster as compared with those 
in case (a). But overshoot occurs. 

(c) count/Nm1008.2k 4
ID

−⋅= , which is about 70% 

of IDk . It only remains stable once in all our tests. 

When IDID kk >  the system is unstable in all the 

tests. 
 

 
5. CONCLUSION 

 
In this paper, it has been shown that it is possible to 
achieve zero-count precision error positioning with 
100% repeatability. This possibility is mainly based 
on the new knowledge of the pre-sliding dynamics 
revealed recently. It turns out that to get precision-
limit positioning (PLP) an integral type control is 
necessary. A simple and explicit stability criterion is 
given. Some practical issues concerning PLP are also 
addressed. This research is partly supported by the 
grant NSC86-2213-E-006-045. 
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Fig. 7. Positioning  with fine encoder 
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Fig. 8. Fine positioning - jerks appear due to creep 
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