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Abstract:  To deal with complex nonlinear systems such as underactuated mechanisms, in 
this paper a global stable as well as optimal fuzzy controller is presented to achieve   
output tracking control of nonlinear systems by combining the linear optimal control 
theory and linear regulator theory with the Takagi-Sugeno fuzzy methodology. The 
stability of the entire closed-loop fuzzy system is ensured by the Lyapunov stability 
analysis.  This paper also includes a hardware description and the real-time results for the 
application to a benchmark underactuated robot: Pendubot.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Recently, the Takagi-Sugeno fuzzy model (Takagi 
and Sugeno, 1985) has been applied for the control 
of nonlinear systems (see, for example, Taniguchi et 
al., 1999; Begovich, et al., 2000). Using this fuzzy 
description, a nonlinear plant is represented by a set 
of linear models interpolated by membership 
functions and then a model-based fuzzy controller 
was developed. This technique seems particularly 
suitable for the control of complex nonlinear systems 
since the dynamics of a nonlinear system are easily 
obtained by linearization of nonlinear models near 
different operation points or by input /output 
identification around these points. In Taniguchi, et 
al. (1999), output tracking is achieved by minimizing 
the error between the nonlinear system and a 
nonlinear reference model, both of them are modeled 
by T-S methodology. In the work (Begovich, et al., 
2000), a fuzzy control scheme combining linear 
regulatory theory (Isidori, 1995) with Takagi-Sugeno 
fuzzy control methodology, which could allow the 
external perturbation rejection, is proposed.  
 
In this paper we will also use the Takagi-Sugeno 
fuzzy methodology to model a class of nonlinear 
systems, i.e., each fuzzy local model represents a 
linearized model of the operation point of the 

controlled nonlinear system. The control algorithm 
employs the fuzzy control that is designed by an 
aggregation of the fuzzy local controllers. However, 
different from the previous approaches, the local 
controller for each local model consists of an optimal 
feedback plus a term for perturbation rejection, 
which is design based on the optimal control and the 
linear regulatory theory. The advantage for such a 
design is only a simple fuzzy controller is used in the 
approach and the proposed control law ensures 
global stability of the closed-loop system and 
guarantees the asymptotic optimal output trajectory 
tracking. 
 
To verify the proposed scheme, experiments are 
conducted in an under-actuated robot: Pendubot 
(Spong and Block, 1995). Pendubot, as a   
benchmark nonlinear system, is a planar two-link 
underactuated robotic mechanism. This system has 
extensively been used in education and research to 
evaluate the performance of different control 
algorithms. Linear and nonlinear control algorithms 
have been frequently used to stabilize the Pendubot 
in vertical position (see, for example, Block, 1996; 
Haro and Begovich, 1998). Fuzzy control has also 
been used in Sanchez, et al. (1998). For trajectory 
tracking, there are few works in literature. This paper 
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illustrates the application of the proposed algorithm, 
by forcing the Pendubot to track a sinusoid signal of 
significative amplitude in real time, around an 
unstable equilibrium point. The contribution of this 
paper can, therefore, be summarized as 1): a optimal 
control law, which can realize the system optimal 
output  tracking control as well as allow the external 
perturbation rejection, is proposed by using the 
Takagi-Sugeno fuzzy model; 2): this law is 
implemented in a real time application.  
 
 

     2. OPTIMAL T-S FUZZY ALGORITHM 
 
In this section, an optimal fuzzy control scheme for 
nonlinear systems is presented. This algorithm uses 
T-S fuzzy rules, whose design for local control laws 
is based on the linear optimal control theory and 
linear regulatory theory. For the sake of 
completeness, we present some well-known 
preliminaries about T-S model, linear regulator 
theory and linear optimal control theory. Based on 
these preliminaries, the novel control algorithm is 
proposed. 
 
2.1. T-S fuzzy model 
 
In this methodology, nonlinear systems are 
approximated by a set of linear local models. A 
dynamic Takagi-Sugeno fuzzy model (Takagi and 
Sugeno, 1985) is described by a set of fuzzy ”IF-
THEN” rules, with fuzzy sets in the antecedents and 
local linear time invariant systems in the 
consequents. Every ith rule of a T-S fuzzy model has 
the following form: 
 
 Plant Rule i. 
 IF z1(t) is M1I… ,zj(t) is Mji, …, zq(t) is Mqi  
THEN 
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where i=1,…r with r is the number of rules; the zj 
(j=1,…q) are the premise variables, which may be 
functions of the states of an another variables; Mji are 
the fuzzy sets; x nR∈  is the state vector, u mR∈  is 
the input vector; y pR∈ is the state output vector; 
Ai, Bi, Ci, are the matrices of adequate dimensions.  
z(t) means the vector containing all the zj.  
 
The final state and output of the fuzzy system is 
inferred as follows:  

where iλ : , i=1, …r , are the membership 
function of the system belonging to plant rule i. 

]1,0[→qR

 
The above fuzzy model is a general nonlinear time-
varying equation and has been used to model the 
behaviours of complex nonlinear dynamic systems.  
 
2.2. Linear Regulator and Optimal Control theory 
 
Let us consider a linear system 
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where x is the internal state vector of the plant; u is 
the control input vector; ω  is a vector containing 
external disturbances and or references and e is the 
tracking error if ω is treated as a reference signal. 
 
In linear optimal control theory, if ( ) 0=tω , the 
control goal is to obtain the optimal gain matrix K 
such that the feedback law u=Kx minimizes the cost 
function: 

( )∫
∞

+Λ=
0

dtRuueeJ TT

where  and R are positive definite matrices. Λ
Assuming that the pair (A, B) is stabilizable. Then, let 
F be the unique positive definite solution to the 
associated matrix Riccati equation: 

CCFBFBRFAFA TTT Λ+−+= −10  
The optimal control gain can be defined as K=BTF.  
 
When the disturbances and or references ( ) 0≠tω , 
the linear regulator theory (Francis, 1977; Isidori, 
1995), can be utilized to ensure the asymptotic output 
tracking. In the linear regulator theory the control 
goal is to obtain a stable close loop system and 
asymptotic tracking error, for every possible 
exogenous input in a prescribed    family of functions 
of time.  
To ensure e , the following is assumed: 0)( →t
 
A1. The exosystem is antistable, i.e, all the 
eigenvalues of S have nonnegative real part.  
 
With Assumption A1, the problem of output 
regulation via state feedback can be determined if 
and only if there exist matrices Π and Γ which solve 
the following linear matrix equation. 
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The optimal output control law with the external 
perturbation rejection can be specified as ( )
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where K=BTF and Π−Γ= KL .  (2) 
 
2.3. Proposed Algorithm 
 



 

     

At this stage, a new T-S fuzzy control for output 
tracking control of nonlinear systems can be 
presented. To design the control rules, the same 
fuzzy sets as antecendents are used in the above plant 
rules. As consequents, local laws, based on the linear 
regulator theory and linear optimal control theory for 
each local linear model, can be designed. The rules 
for the plant and controller are 

                     Plant Rule: thi
IF  is M , …  ,  is ,…, is .                     

Then (3) 
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where , , and 
 is stable; 

i
T

ii FBK =

i
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T

iii FBL Π−Γ=

ii KBA + iΓ and satisfy (1) for each 
( , , C , , S, ), i  

iΠ
....1 r=iA iB i iP Qi

Hence the overall optimal fuzzy controller is given 
by 

The design purpose in this study is to specify the 
fuzzy control in (4) to achieve a global stable and 
optimal output control. Then, we obtain the 
following result: 
 
Theorem: If the local linear systems in (3) satisfy 
Assumption A1 and the local output regulators (4) 
via state feedback can asymptotically stabilize the 
local linear systems in (3) and ensure the asymptotic 
output tracking for every possible initial state and 
every possible exogeneous input. Then, the fuzzy 
control (5) can globally stabilize the Takagi-Sugeno 
system (3) and ensures the asymptotic output 
tracking. Furthermore, its output is optimal. 
 
Proof: Connecting plant rules with controller rules, 
the closed-loop system is obtained:  
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First, let ( ) 0=tω and prove that the equilibrium x=0 
is globally asymptotically stable in the first 
approximation. Denote the sum over all possible 
combinations of ( )  as  

the first approximation can be written as: 
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For stability analysis, a Lyapunov function is chosen: 
      V  
where P is a symmetric positive definite matrix.  The 
derivative of V(x) can be written as 
 V  

 

)

( )( ) ( )( )( )

( )( ) ( )( )
Px

tztz

KBAtztz
x

x
tztz

KBAtztz
PxxV

T

r

ji ji

iii
r

ji ji
T

r

ji ji

iii
r

ji ji
T















 +
+















 +
=

∑
∑

∑
∑

=

=

=

=

1,

1,

1,

1,

λλ

λλ

λλ

λλ
&

         

( )( ) ( ) ( )[ ]
( )( )

( )5)(
1

1

∑
∑

=

= +
= r

i i

r
i iii

tz

tLtxKtz
tu

λ

ωλ

( )

( )( ) ( )( )( )

( )( ) ( )( )

( )( ) ( )( )( )

( )( ) ( )( )

( )( ) ( )( )
( )

( )
( )( ) ( )( )

x
tztz

PKBA

KBAP
tztz

x

x

P
tztz

KBAtztz

tztz

KBAtztz
P

xxV

r

ji ji

T
iii

iiir

ji ji
T

T

r

ji ji

iii
r

ji ji

r

ji ji

iii
r

ji ji

T































+

++

=











































 +

+














 +

=

∑

∑

∑
∑

∑
∑

=

=

=

=

=

=

1,

1,

1,

1,

1,

1,

λλ

λλ

λλ

λλ

λλ

λλ

&  

Since 
( )( ) ( )( )

( )( ) ( )( )
10

1,

≤≤
∑ =

r

ji ji

ji

tztz

tztz

λλ

λλ
 

one has: 
( )( )

( ) ( ) PxKBAKBAPx

xPKBAKBAPxV

r

i

Tr

i jiijii
T

T
iiiiii

r

ji
T
















 +++≤

+++≤

∑ ∑

∑

= =

=

1 1

1,
)(&

 

 
Because  is stable, , 
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therefore, established. 
From the above, we have proved that V  and 
the equilibrium x=0 is globally asymptotically stable 
in the first approximation. 
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Secondly, we shall show that the system output is 
also optimal when ( ) 0=tω . Let consider the 
quadratic cost function for the whole system: 

       ( )dtRuueeJ TT∫
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According to the “additive property of energy” (Wu 
and Lin, 2000) the whole cost J is the combination of 
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where the subscript i  can be any element of set 
. Based on this additive property of energy, 

we know that, at any time instant, because we can 
find the optimal control law for each subsystem to 
minimize the local cost, J
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i, the fuzzy “blended” 
control law (4) is the global minimizer of the total 
cost, J.               
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            3. REAL-TIME IMPLEMENTATION       
 
3.1 Description and Model of the Pendubot. 
      
To demonstrate the validity of the proposed fuzzy 
output control law, a real-time implementation of the 
control strategy was developed for a benchmark 
underactuated robot: Pendubot. The Pendubot 
consists of two rigid aluminum links. The first link is 
coupled to a DC motor mounted to a base. Link 2 is 
coupled to the end of link 1 and in the joint there are 
no actuator. The angular positions of link 1 and 2 are 
measured using two high resolution optical encoders. 
The design gives both links full 360 degrees of 
rotational motion (Spong and Block, 1995). 
 
The schematic diagram of the Pendubot is illustrated 
in Figure 1. 

 
            Fig. 1. Pendubot Scheme 
 
Nonlinear system models: The dynamic matrix 
equation of motion for the Pendubot is given by 
(Spong and Block, 1995); 
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where τ is the vector of torque applied to the links 
and q is the vector of joint angle positions with 
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where l is the length of link 1, l is the distance of 
the center of mass of link 1, is the distance of the 
center of mass of link 2,  is the total mass of link 
1, is the total mass of link 2, is the moment of 

inertia of link one, is the moment of inertia of link 
two about its centroid.  is the friction constant of 

link 1.  is the friction constant of link 2, q and 

are angular positions of the respective links. 
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Using the invertible property of the mass matrix 
D(q), the state equations are given by:   
                                                                      24,23,1211 , qxqxqxqx && ====
The state representation for equation (5) is 
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where  is the input vector and the 
output is selected as y(t)=q
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Linear local model: A local linear model for a 
specific equilibrium point can be obtaining using 
Taylor series. For the Pendubot every equilibrium 
point should satisfy:  0

12 90=+ qq
Linearization of equation (6) by Taylor series is 
given as: 
 

where 

  and u  are 
the values of x and u for the specific equilibrium 
point. 
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3.2 The experimental application: 
     
In this section the real-time implementation of the 
proposed algorithm to the Pendubot is discussed. The 
objective is to force the angular position of link 2 
(q2) to follow a sinusoidal signal of 600 amplitude. In 
order to track this signal, it is required that at every 
trajectory point the equality  has to be 
filled. 
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Fuzzy plant: To model the Pendubot, the five fuzzy 
sets are proposed in Figure 2. The notation is BP: 
Big Positive, MP: Medium Positive; Z: Zero; MN: 

Medium Negative; BN: Big Negative. To obtain the 
linear models for the consequents, the nonlinear 
model of Pendubot is linearized around the following 
equilibrium points 
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For each equilibrium point a linear system , 
 is obtained. The values of  are 

omitted here due to the limitation of space. Since the 
output y is q

( )ii BA ,
( )ii B,5,...,1=i A

2, thus C=[0 0 1 0] is valid for all local 
systems. The external perturbation is not considered  
for this system and  hence the matrix P=0. 

 
                        Fig.2. Fuzzy Sets 
The control goal is to track a sinusoidal signal. In 
order to obtain it, for each equilibrium point an 
additional signal (offset) has be added to the 
sinusoidal signal; hence the following reference has 
to be generated. 

5,...,1;sin =+= itkuy ofsir α
where  is the required offset for each 

equilibrium point and it is equal to , k is the 
amplitude of the sinusoidal signal and 

ofsiu
0
2iq

α  is its 
angular frequency. 

( ) ( ) ( )( )

( ) ( ) ( )( ) 00

00

,,,

,,,

ux
u

ttutxFtF

ux
x

ttutxFtF

u

x

∂
∂=

∂
∂=

The exosystem for each linear region is given as: 

( ) ( )
( ) ( )tQty

tSt

ir ω
ωω

=

= ;&

where: 

( ) ( ) ( )[ ]
[ ]

[ ] 5,...,1;0

5,...,1
00

00
000

1010

321

=−−=

=∀
















−
=

=

=

ikuQ

iS

ttt

ofsii

T

T

α
α

ω

ωωωω

 
Fuzzy controller: The fuzzy sets for the controller are 
the same as for the plants. For each 

 the matrices  ( )iiiii QSPCBA ,,,,, iΓ  and  are 
determined from (1). The L

iΠ
i is calculated using (2), 

each Ki is selected according to linear optimal control 
theory. The local control signals are obtained from 
(4). Finally the control signal applied to the system is 
given by (5). 



 

     

      
3.3 Experiments Results 
      
The schematic diagram of the experimental setup is 
shown in Fig. 3. The motor is a high torque 90VDC 
permanent magnet one. Link position is measured 
with 1024 encorder and a servo amplifer 25A8PWM 
is used to drive the motor. It was operated in torque 
mode. The DAC card provides analogic signal 
between –10 and +10 volts. The control algorithm 
was implemented in C language, on a Pentium IBM 
PC 125 MHZ. The sampling time is 5ms. 
 

 
           Fig. 3.  Experiment setup  configuration 
 
Figure 4 shows results when the sinusoidal signal to 
be tracked is 60 sin0.5t. In this case, the close loop 
system presents good tracking and there are not 
control signal saturations.  

 

 

 
Fig.4. Starting from top: Link 2 angular position; link 
1 angular position, tracking error and control signal. 

 
 
 
 

4. CONCLUSIONS 
 
Based on the T-S fuzzy model, an optimal fuzzy  
control algorithm is proposed in this paper to deal 
with the output control of complex nonlinear systems 
via state feedback.  The advantage of the proposed 
control design is that only a simple fuzzy controller 
is used as an alternative to the complexity design. 
The proposed algorithm was implemented on an 
underactuated robot, Pendubot. The experimental 
results confirm the validity of the accurate output 
tracking capability and the robust performance. 
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