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Abstract: To deal with complex nonlinear systems such as underactuated mechanisms, in
this paper a global stable as well as optimal fuzzy controller is presented to achieve
output tracking control of nonlinear systems by combining the linear optimal control
theory and linear regulator theory with the Takagi-Sugeno fuzzy methodology. The
stability of the entire closed-loop fuzzy system is ensured by the Lyapunov stability
analysis. This paper also includes a hardware description and the real-time results for the
application to a benchmark underactuated robot: Pendubot. Copyright © 2002 IFAC
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1. INTRODUCTION

Recently, the Takagi-Sugeno fuzzy model (Takagi
and Sugeno, 1985) has been applied for the control
of nonlinear systems (see, for example, Taniguchi et
al., 1999; Begovich, et al., 2000). Using this fuzzy
description, a nonlinear plant is represented by a set
of linear models interpolated by membership
functions and then a model-based fuzzy controller
was developed. This technique seems particularly
suitable for the control of complex nonlinear systems
since the dynamics of a nonlinear system are easily
obtained by linearization of nonlinear models near
different operation points or by input /output
identification around these points. In Taniguchi, et
al. (1999), output tracking is achieved by minimizing
the error between the nonlinear system and a
nonlinear reference model, both of them are modeled
by T-S methodology. In the work (Begovich, et al.,
2000), a fuzzy control scheme combining linear
regulatory theory (Isidori, 1995) with Takagi-Sugeno
fuzzy control methodology, which could allow the
external perturbation rejection, is proposed.

In this paper we will also use the Takagi-Sugeno
fuzzy methodology to model a class of nonlinear
systems, i.e., each fuzzy local model represents a
linearized model of the operation point of the

controlled nonlinear system. The control algorithm
employs the fuzzy control that is designed by an
aggregation of the fuzzy local controllers. However,
different from the previous approaches, the local
controller for each local model consists of an optimal
feedback plus a term for perturbation rejection,
which is design based on the optimal control and the
linear regulatory theory. The advantage for such a
design is only a simple fuzzy controller is used in the
approach and the proposed control law ensures
global stability of the closed-loop system and
guarantees the asymptotic optimal output trajectory
tracking.

To verify the proposed scheme, experiments are
conducted in an under-actuated robot: Pendubot
(Spong and Block, 1995). Pendubot, as a
benchmark nonlinear system, is a planar two-link
underactuated robotic mechanism. This system has
extensively been used in education and research to
evaluate the performance of different control
algorithms. Linear and nonlinear control algorithms
have been frequently used to stabilize the Pendubot
in vertical position (see, for example, Block, 1996;
Haro and Begovich, 1998). Fuzzy control has also
been used in Sanchez, et al. (1998). For trajectory
tracking, there are few works in literature. This paper



illustrates the application of the proposed algorithm,
by forcing the Pendubot to track a sinusoid signal of
significative amplitude in real time, around an
unstable equilibrium point. The contribution of this
paper can, therefore, be summarized as 1): a optimal
control law, which can realize the system optimal
output tracking control as well as allow the external
perturbation rejection, is proposed by using the
Takagi-Sugeno fuzzy model; 2): this law is
implemented in a real time application.

2. OPTIMAL T-S FUZZY ALGORITHM

In this section, an optimal fuzzy control scheme for
nonlinear systems is presented. This algorithm uses
T-S fuzzy rules, whose design for local control laws
is based on the linear optimal control theory and
linear regulatory theory. For the sake of
completeness, we present some well-known
preliminaries about T-S model, linear regulator
theory and linear optimal control theory. Based on
these preliminaries, the novel control algorithm is
proposed.

2.1. T-S fuzzy model

In this methodology, nonlinear systems are
approximated by a set of linear local models. A
dynamic Takagi-Sugeno fuzzy model (Takagi and
Sugeno, 1985) is described by a set of fuzzy “IF-
THEN?” rules, with fuzzy sets in the antecedents and
local linear time invariant systems in the
consequents. Every ith rule of a T-S fuzzy model has
the following form:

Plant Rule ;.
IF z,(t) is My1... ,zj(t) is Mj;, ..
THEN

i(r) = 4x(e)+ Bu(r)
)= C;x(0)
where i=1,...r with r is the number of rules; the z;

(=1,...q) are the premise variables, which may be
functions of the states of an another variables; M;; are

the fuzzy sets; x[LJ R" is the state vector, ul] R" is

the input vector; yLJ R” is the state output vector;
A, B;, C,;, are the matrices of adequate dimensions.
z(t) means the vector containing all the z.

. Zg(t) is Mg

The final state and output of the fuzzy system is
inferred as follows:

x(t) _ Z;l A; (Z(t))(A[x(t) + Bi”(t))
PIHED)

3 A0

(1) ===

where A,:R? - [0,1], i=1,
function of the system belonging to plant rule i.

...T, are the membership

The above fuzzy model is a general nonlinear time-
varying equation and has been used to model the

behaviours of complex nonlinear dynamic systems.
2.2. Linear Regulator and Optimal Control theory

Let us consider a linear system

x(¢) = Ax(r) + Bu(r) + Pelr)

ifr) = sals)

e(r) = Cx(1) + Qo)
where x is the internal state vector of the plant; u is
the control input vector; ¢ is a vector containing

external disturbances and or references and e is the
tracking error if « is treated as a reference signal.

In linear optimal control theory, if w(t)zo, the
control goal is to obtain the optimal gain matrix K
such that the feedback law u#=Kx minimizes the cost
function:

J= j: (eT/\e +uTRu)dt

where A and R are positive definite matrices.
Assuming that the pair (4, B) is stabilizable. Then, let
F be the unique positive definite solution to the
associated matrix Riccati equation:
0=FA+A"F-FBR'B"F+C"N\C

The optimal control gain can be defined as K=B'F.

When the disturbances and or references a;(t):t 0,
the linear regulator theory (Francis, 1977; Isidori,
1995), can be utilized to ensure the asymptotic output
tracking. In the linear regulator theory the control
goal is to obtain a stable close loop system and
asymptotic tracking error, for every possible
exogenous input in a prescribed  family of functions
of time.

To ensure e(t) — 0, the following is assumed:

Al. The exosystem is antistable, i.e, all the
eigenvalues of S have nonnegative real part.

With Assumption Al, the problem of output
regulation via state feedback can be determined if
and only if there exist matrices [1and I" which solve
the following linear matrix equation.
MNS=A0+Blr+P
0=Cn+Q (1)
The optimal output control law with the external
perturbation rejection can be specified as
u(t) = Kx(t)+(I' = KM)e(2)
= Kx(t)+ Lat)

where K=B'Fand L =T -KIT. ()

2.3. Proposed Algorithm



At this stage, a new T-S fuzzy control for output
tracking control of nonlinear systems can be
presented. To design the control rules, the same
fuzzy sets as antecendents are used in the above plant
rules. As consequents, local laws, based on the linear
regulator theory and linear optimal control theory for
each local linear model, can be designed. The rules
for the plant and controller are

i" Plant Rule:
IF 2, () is My, .o oz, () is M ...
X

¢(¢) = 4,x(¢) + Bu(t) + Pt

Then {ér) = w() (3)
elt)=Cixlr)+ 0ike)

Controller Rule:
IF zi( ) is MU, ,z_]-() s M.,
Then u=K,x(r) + L,a(t) (4)
K,=B'F,, L =T-B'FN, and
A; + B;K; is stable; ';and [1; satisfy (1) for each
(4;, B;, C;, P,S, Q;), i=1..r.

Hence the overall optimal fuzzy controller is given
by

" q(t)is M, .

t

z, (t) is M

qi

where

D SAVIC)) (XL, R
T Aille)
The design purpose in this study is to specify the
fuzzy control in (4) to achieve a global stable and
optimal output control. Then, we obtain the

following result:

Theorem: If the local linear systems in (3) satisfy
Assumption Al and the local output regulators (4)
via state feedback can asymptotically stabilize the
local linear systems in (3) and ensure the asymptotic
output tracking for every possible initial state and
every possible exogeneous input. Then, the fuzzy
control (5) can globally stabilize the Takagi-Sugeno
system (3) and ensures the asymptotic output
tracking. Furthermore, its output is optimal.

Proof: Connecting plant rules with controller rules,
the closed-loop system is obtained:

N Do Ao 3 A
Z;l 2:(=()) Z::] A, (z(0))

[zjla,(z(t»(K,x(t)w(z»}zjla,(z(t»aw@
> A A
A el

> )

First, let a;(t) = 0 and prove that the equilibrium x=0

W) =

is globally asymptotically stable in the first
approximation. Denote the sum over all possible

O ) as =,

combinations of (Z, A

the first approximation can be written as:

DIACOIZNE0) 20

()= -

z. - i(z(f))/]j (Z(t))
RO A0
PIACOVRCO)

S AW, EKA, +B.K)
= =hE x(0)
> A, )
For stability analysis, a Lyapunov function is chosen:
Vi(x)= xT Px
where P is a symmetric positive definite matrix. The
derivative of V(x) can be written as
V(x) =T Pi+5T Px
- AN () + 8K
V(x)=x"P Zl’j_l ! g

S 4G 0)

i,j=1 !

T

~

Z,r = A, (Z (f ))

Since
e AEON D)

S AGO, )

i,j=1 !

<
—
~
~—
N

one has:

DI
< xrp[z;'zl (4, +B,.1<>,.)+(Z:=1 (4, +Bl.K/-))T]Px

Because 4; + B,K;
which implies

Z;l (Ai + Bin)< 0

The linear matrix inequalities (LMI):

(P(A +B,K;)+(4, +BK;) P)x

is stable, ie., 4; +B;K; <0,



T
PZ:ZI(A,« +BiK/‘)+(Z:=1 (A,. +Bin)) P<0 is,

therefore, established.
From the above, we have proved that V(x) <0 and

the equilibrium x=0 is globally asymptotically stable
in the first approximation.

Secondly, we shall show that the system output is
also optimal when a;(t): 0. Let consider the

quadratic cost function for the whole system:
J= I (eT/\e + uTRu)Jt
0

According to the “additive property of energy” (Wu
and Lin, 2000) the whole cost J is the combination of
the local cost: J;.

J; = jw (eT/\e +uiTRu,-)
0

where the subscript i can be any element of set
{l,...,r}. Based on this additive property of energy,

we know that, at any time instant, because we can
find the optimal control law for each subsystem to
minimize the local cost, J;, the fuzzy “blended”
control law (4) is the global minimizer of the total
cost, J.

When a;(t) # 0, it can be shown that Lime(¢) =0.

t >0

ST AR ST AGeost)
SUAED) YA
MG+ 0uk)
> A
M),
> AL
022 Y (Cal)+0el)= 3 (o)

i=1
N,S=A4,N,+B,T +Pis

satisfied, the graph of the mapping x=T1,& is a

e(t)=

Because 0 <

Because the equation

center manifold of the linear system (Isidori, 1995).
By the equation (0 =C;I1; +Q, ), we get:

e(t) = Cix(t)+ Q,at) - (C;N, + 0, )e)

=Cx(t) - C;Nar)
The point (x, ) = (0,0) is a stable equilibrium of the
linear system. Then, for sufficiently small
(x(0),a(0)), the solution (x(r),alt)) of the linear
system remains in any arbitrarily small neighborhood
of (0,0) for all t =0. Using a property of center

manifold (Isidori, 1995), it is deduced that there exist
real numbers M>0 and a>0 such that

() = ex0)]| < Me™ |x(0) =1, e(0))|
for all £0. By continuity of e, (¢), one has
Lime;(t)=0.

{00

Therefore, one can conclude that
Lim Zr e; (t) =0and Lime(t)=0. So there exists
t -0 i=1 [

a neighbourhood of (0,0), for each initial state and
input (x(O), 04(0)) ,

each  possible  exogenous
lime(r)=0.
t—>o00

3. REAL-TIME IMPLEMENTATION
3.1 Description and Model of the Pendubot.

To demonstrate the validity of the proposed fuzzy
output control law, a real-time implementation of the
control strategy was developed for a benchmark
underactuated robot: Pendubot. The Pendubot
consists of two rigid aluminum links. The first link is
coupled to a DC motor mounted to a base. Link 2 is
coupled to the end of link 1 and in the joint there are
no actuator. The angular positions of link 1 and 2 are
measured using two high resolution optical encoders.
The design gives both links full 360 degrees of
rotational motion (Spong and Block, 1995).

The schematic diagram of the Pendubot is illustrated
in Figure 1.

yoh

Fig. 1. Pendubot Scheme

Nonlinear system models: The dynamic matrix
equation of motion for the Pendubot is given by
(Spong and Block, 1995);

D(g)j +Clg.4)i+Gla)+ Flg) =1 (5)
where T is the vector of torque applied to the links
and q is the vector of joint angle positions with

_ldn dn
D(q)_{dzl dzj

di, =dy =m, (132 +1hl,, 00342)"'12

_ 2
dy =myls, +1,

N_| hd2  hgy +hq
i) 5

h=-myl|l.,singq,



where/, is the length of link 1,/ is the distance of
the center of mass of link 1,7, is the distance of the
center of mass of link 2,m, is the total mass of link

1,m, is the total mass of link 2, /, is the moment of

¢ = (myl, +myl)gcosq, +myl,g
cos(g; +4,)
® =mygl., COS(‘]l + 92)

i

inertia of link one, / | is the moment of inertia of link

two about its centroid. k, is the friction constant of
link 1.k, is the friction constant of link 2, g, and

q, are angular positions of the respective links.

Using the invertible property of the mass matrix
D(q), the state equations are given by:

X1 =S4y, Xy T4y X3 =4y X4 =4
The state representation for equation (5) is
i{0)= s () + glaule) = F(ele)ule)e) -~ (6)
where u(t) = [1’l
output is selected as y(t)=q,.

O]T is the input vector and the

Linear local model: A local linear model for a
specific equilibrium point can be obtaining using
Taylor series. For the Pendubot every equilibrium

point should satisfy: g, +¢, = 90°

Linearization of equation (6) by Taylor series is
given as:

F.()= aF(X(f),u(f)J)‘ 00

" X', u
Ox
£ ()= OF (x(¢), u(t).2) ‘xo,uo
Oou
where

x° =[q10,qlo,q20,(220]T and u° =[T10 O]T are
the values of x and u for the specific equilibrium
point.
Defining x:= Qx; A:= F, (t); B=F, (t) , the linear
local model is:
x = Ax(r) + Bulr)

3.2 The experimental application:

In this section the real-time implementation of the
proposed algorithm to the Pendubot is discussed. The
objective is to force the angular position of link 2
(q) to follow a sinusoidal signal of 60° amplitude. In
order to track this signal, it is required that at every

trajectory point the equality ¢, +¢, = 90° has to be
filled.

Fuzzy plant: To model the Pendubot, the five fuzzy
sets are proposed in Figure 2. The notation is BP:
Big Positive, MP: Medium Positive; Z: Zero; MN:

Medium Negative; BN: Big Negative. To obtain the
linear models for the consequents, the nonlinear
model of Pendubot is linearized around the following
equilibrium points

x! =[g5.0,43,0], i=1...5
Where g3, =70°, g3, =35°, ¢35 =0°,
g9, =-35°, ¢ =-70° and
qloi =90° —qg[ ,i=1..5
For each equilibrium point a linear system (Al-,Bl-),
i=1,..,5 is obtained. The values of (AA BA) are

12 1
omitted here due to the limitation of space. Since the
output y is q,, thus C=[0 0 1 0] is valid for all local
systems. The external perturbation is not considered
for this system and hence the matrix P=0.

BN _MN Z WP EP

1--«-—-‘—-—-.-—— e R —

05 -0 35 0 ¥ M 105 degrees

Fig.2. Fuzzy Sets
The control goal is to track a sinusoidal signal. In
order to obtain it, for each equilibrium point an
additional signal (offset) has be added to the
sinusoidal signal; hence the following reference has
to be generated.
Yy Sugy thsinat; =15

where wu,, is the required offset for each

equilibrium point and it is equal to qgi, k is the
amplitude of the sinusoidal signal and @ is its

angular frequency.
The exosystem for each linear region is given as:

¢ ()= S« ()
v, (()=0w()

where:

o =[wl) @) @)

w" =1 0 1
0 0 0
S=10 0 a| Oi=1,.5
-a 0
0 =[ruyy -k of i=1.5

Fuzzy controller: The fuzzy sets for the controller are
the same as for the plants. For each
(A- B; C-,F;,S,Qi) the matrices [; and [I1; are

determined from (1). The L; is calculated using (2),
each K is selected according to linear optimal control
theory. The local control signals are obtained from
(4). Finally the control signal applied to the system is
given by (5).



3.3 Experiments Results

The schematic diagram of the experimental setup is
shown in Fig. 3. The motor is a high torque 90VDC
permanent magnet one. Link position is measured
with 1024 encorder and a servo amplifer 25A8PWM
is used to drive the motor. It was operated in torque
mode. The DAC card provides analogic signal
between —10 and +10 volts. The control algorithm
was implemented in C language, on a Pentium IBM
PC 125 MHZ. The sampling time is Sms.

- D/A Board I
FC

{la=s  Encodaer
interface
={jrn:  Board

Fig. 3. Experiment setup configuration

Figure 4 shows results when the sinusoidal signal to
be tracked is 60 sin0.5t. In this case, the close loop
system presents good tracking and there are not
control signal saturations.

E H L H L L H 1
o 5 10 15 20 _ 25 30 35 40 45 50
Hme =

o 5 10 15 20 25 30 35 40 45 50
time(s)

controljn)

time(s)

Fig.4. Starting from top: Link 2 angular position; link
1 angular position, tracking error and control signal.

4. CONCLUSIONS

Based on the T-S fuzzy model, an optimal fuzzy
control algorithm is proposed in this paper to deal
with the output control of complex nonlinear systems
via state feedback. The advantage of the proposed
control design is that only a simple fuzzy controller
is used as an alternative to the complexity design.
The proposed algorithm was implemented on an
underactuated robot, Pendubot. The experimental
results confirm the validity of the accurate output
tracking capability and the robust performance.
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