Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

ASYMPTOTIC STABLE TRACKING FOR ROBOT
MANIPULATORS VIA SECTORIAL FUZZY
CONTROL!

Victor Santibanez,* Rafael Kelly ** and Miguel Llama *

* Instituto Tecnoldgico de & L aguna
Apdo. Postal 49, Adm. 1
Torreon, Coahuila, 27001, MEXICO
e-mail: vsantiba@itlalaguna.edu.mz,
Faz: + 52 (871) 7-13-09-70
** Divisi “on de Bica Aplicada, CICESE
Apdo. Postal 2615, Adm. 1,
Carretera Tijuana—Ensenada Km. 107
Ensenada, B. C., 22800, MEXICO
e-mail: rkelly@cicese.mz, Fax: + 52 (646) 1-75-05-54

Abstract: This paper shows that fuzzy control systems satisfying sectorial properties
are effective for motion tracking control of robot manipulators. We propose a controller
whose structure is composed by a sectorial fuzzy con troller plus a full non-linear
robot dynamics compensation, in such a w aythat this structure leads to a very
simple closed—loop system represented by an autonomous non-linear differential
equation. We demonstrate via Lyapunov theory, that the closed—loop system is
globally asymptotically stable. Experimental results show the performance of the

proposed controller.
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1. INTRODUCTION

Most of fuzzy con trol applications use a class
of fuzzy controllers which ha vespecific sectorial
properties of their input—output mappings. This
class of fuzzy controllers, so—called Sectorial Fuzzy
Controllers (SFC), has very interesting sectorial
properties, which ha vebeen presented in Calcev
(1998) and Calcev et al (1998). A SFC has tw o
inputs and one output and it can be characterized
from an input—output point of view as a nonlinear
static mapping.

The sectorial properties of the SFC allow us to
face up one of the most controversial issues in
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fuzzy con trol:the stabilit y analysis of the fuzzy
closed—loop systems.

On the other hand, the application of fuzzy tech-
niques to con trolthe motion of robot manipu-
lators has grown in recen tyears. Some of these
w orks can be found in Bikuda and Shibata (1992),
Meslin et al (1993), Begon et al (1995), Commuri
and Lewis (1996), Hsu et al (1997), Kelly et al
(1999), Yoo and Ham (2000), Llama et al (2000),
Santiba™mezet al (2000), Llama et al (2001). The
structure of fuzzy controllers used in Hsu et al
(1997), Kelly et al (1999), Llama et al (2000) and
Llama et al (2001) is based on fuzzy tuning algo-
rithms to select the Proportional and Derivative
(PD) gains according to the actual position error.
F or these fuzzy cortrollers, global asymptotic sta-
bility of the closed—loop system has been proven.



In this paper, inspired by Calcev (1998), instead
of using fuzzy techniques for tuning PD gains,
we propose a motion tracking controller for robot
manipulators based on a sectorial fuzzy scheme.
Its structure is composed by a sectorial fuzzy
controller plus a full non—linear robot dynamics
compensation, in such a way that this structure
leads to a very simple closed—loop system, which
is represented by an autonomous non-linear dif-
ferential equation. We prove via Lyapunov the-
ory, that the closed—loop system —in absence of
friction— is globally asymptotically stable. The
performance of the proposed control scheme is
illustrated via real-time control experiments on a
two degrees of freedom direct—drive vertical robot
arm.

2. ROBOT DYNAMICS

In the absence of friction, the dynamics of a
serial n—link robot can be written as (Spong and
Vidyasagar, 1989):

M(q)g+C(q,q)q +g(q) =T (1)

where q is the n x 1 vector of joint displacements,
q is the n x 1 vector of joint velocities, 7 is the
n x 1 vector of applied torque inputs, M(q) is
the n x n symmetric positive definite manipulator
inertia matrix, C'(q,q)q is the n x 1 vector of
centripetal and Coriolis torques, and g(q) is the
n x 1 vector of gravitational torques.

3. PROPOSED FUZZY MOTION TRACKING
CONTROLLER

The motion control problem of manipulators in
joint space can be stated in the following terms.
Assume that joint position g and joint velocity
g are available for measurement. Let the desired
joint position g, be a twice differentiable vector
function. We define a motion controller as a con-
troller to determine the actuator torques 7 in such
a way that the following control aim be achieved
Am g(t) = qq(?).
To solve this problem we resort in this paper
to fuzzy control strategies. The structure of the

proposed sectorial fuzzy motion control strategy
is captured by the following control law

T = M(q)[d, + ®(@,a)] +C(q,q)q + 9(a)(2)

where g4, g, and ¢, are the nx1 vectors of desired
position, desired velocity and desired acceleration,
respectively. The joint position error is denoted by
the nx1 vector ¢ = g, —q while Q = g,—q stands

Fig. 1. Closed-loop system.

for the n x 1 vector of velocity error. fl>((1,f1) is
a n x 1 vector whose entries ¢;(d;,q;), with i =
1,2,...,n are the real input—output mappings of
the sectorial fuzzy controller (SFC), whose prop-
erties were established in Calcev (1998) and that
we list later on. ®(g,q) is a decoupled nonlinear
mapping (in the sense that ¢;(q,q) depends only
on §i, ;) of the form

The proposed control law (2) is composed by a
sectorial fuzzy controller plus a full non-linear
robot dynamics compensation.

In order to analyse the stability of the closed—
loop system we recall some interesting properties
of the SFC, whose proofs were presented in Calcev
(1998).

e Property 1. ¢;(0,0) =0

e Property 2. ¢;(Gi,3;) = —¢i(—di» —G;)
e Property 3. There exist A,y > 0 such that
0 < Gil¢i(Gi, @) — 6:(0,3:)] < AG? Y G
- U ~ 2
0 < @[9:(Gi, @) — ¢:(Gi,0)] < vg;

e Property 4. ¢(¢;,0) =0= ¢; =0.

4. STABILITY ANALYSIS

The closed-loop system, whose block diagram is
shown in Figure 1, is obtained by combining the
robot dynamic model (1) with the control law (2).
This can be written as:

a[T_[ 1]
= 4
il |-e@a)

which is an autonomous nonlinear differential

equation and, due to property 4 of d)i(q},&i), the
origin of the state space is an equilibrium point.



To carry out the stability analysis we propose the
following Lyapunov function candidate:

n G
V@) =ga'd+ }j/ 66,0 dei. ()
=170

The first term of V((],f]) is a positive definite
function with respect to Q For the second term
of (5), notice that, from properties 1 and 3 of
(z)l((jl,(jl), it results that 0 < (jlgf)z((jl, 0) < )\(j%, for
all §; # 0. This means that ¢(g;,0) belongs to the
sector (0, A] and hence [ ¢;(&;,0)d& >0 V G; #
0, and Iy i(&,0)d& — 0o as G — oo, so that,
Vg, q ) is a globally positive definite and radially
unbounded function, therefore (5) qualifies as a
Lyapunov function candidate.

The time derivative of the Lyapunov function
candidate is

V(@.d)=4q a+ 3 i {/mgl, )dgi} G,
0

=q q+q 2(q.0) (6)

where we have used the Leibnitz’ rule for differen-
tiation of integrals. By using (4), the time deriva-
tive of the Lyapunov function candidate along of
the closed—loop system trajectories yields

V(@4 =i [2@q) -2@0)|.

Since ®(q,q) is a decoupled nonlinearity of the
form (3), we can use property 3 of ¢;(g;, rjz) to con-
clude that V (g, q) is a globally negative semidefi-
nite function. Thus by invoking the Lyapunov’s
direct method (Vidyasagar, 1993) we conclude
stability of the closed—loop system.

In order to prove global asymptotic stability we
exploit the autonomous nature of the closed—
loop system (4) to apply the Krasovskii-LaSalle’s
theorem (Vidyasagar, 1993). In the region

0 o
Q=<1 1:V(@,q) =0
g
[ q q
— — eIRQn
K 0

T
the unique invariant is [§g7 g |7 = 0, because,

from the closed—loop equation (4), we have q=
0 = ®(q,0) = 0 and, from properties 1 and
4, ®(q,0) = 0 & q = 0. Therefore invok-
ing the Krasovskii-LaSalle’s theorem we conclude
that the origin of the state space is a globally

asymptotically stable equilibrium of the closed—
loop system (4).

5. DESIGN OF THE SECTORIAL FUZZY
CONTROLLER

The following SFC was designed following the
steps given in Calcev (1989) to satisfy the sectorial
properties of this mapping.

A fuzzy rule base, for the two input case, consists
of a set of fuzzy IF-THEN rules comprising the
following rules (named R':'2)

IF z,is A AND 25 is A THEN y is Bh'"2 (7)

where [; = —%, ---,—1,0,1,---, Ni;l, and,
for two inputs ¢ = 1,2. Ny is the number of fuzzy
sets of input 1, and N» is the number of fuzzy
sets of input 2. The designed fuzzy rule base is
summarized in the look—up table (Table 1 shown

ahead).

This fuzzy rule base is chosen in such a way that
sectorial properties be satisfied, namely (Calcev,
1989); the control rules are symmetric with re-
spect to the inputs x; and xo; the output is null
for null inputs (the central area of the look—up
table is zero) and; within a row the control action
increases gradually from left to right, and within
a column this increases from top to bottom. The
total number of rules is M = N;Ns.

Since according to (3) ®(q, (1) is a decoupled sys-
tem, we can focus on designing a single fuzzy
system; i.e. ¢1(Gi, 1), and for facility we rename
it as ¢(x1,x2), where 1 = ¢ and 2 = Gi. In
order to build this fuzzy system we select sin-
gleton fuzzification, product premises connective,
product inference, and center average defuzzifier.
Then ¢(x1,22) can be carried out by the well
known fuzzy system with center average defuzzi-
fier (Wang, 1997) whose equation for two inputs
is given by

d)(xl)xZ) =

RS DL 61 PEN)
S T s (M)

where 1 ,1; (z;) represents the membership func-

tion number I; associated to the fuzzy set Al
for the i—th input, and g'** is the center of the
output membership function corresponding to the
consequent of rule R,
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Table 1. Look—up table for the fuzzy
rule base.
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Fig. 2. Input membership functions.

5.1 Design parameters

The universe of discourse for both inputs z; and
T2 were partitioned in five fuzzy sets: A;z =
NB (Negative Big), 4;* = NS (Negative Small),
A9 = 7 (Zero), A} = PS (Positive Small), and
A? = PB (Positive Big). We selected triangular
membership functions g ,i; (z;) for both inputs,

and singleton membership functions sy (y) for
the output, where y = —y>,—¥1,90,y1,y2, iS
chosen in agreement with the consequent of the
fired rule R'**2 in the look-—up table. As well, the
output y was partitioned in five fuzzy sets: B~¥2 =
NB (Negative Big), B~%* = NS (Negative Small),
B% = 7 (Zero), B¥* = PS (Positive Small), and
BY2 = PB (Positive Big).

In all cases the input and output membership
functions are symmetrical with respect to zero.
This is shown in Figures 2 and 3, where p,, =
{—=p2i, =P1i> Poi, Pri, P2i} is the set of the sup-
port parameters bounds (also called fuzzy par-
tition of the universe of discourse) which de-
fines the input membership functions and pp =
{—92, 01,70, 71,72} is the set of the support pa-
rameters bounds for the associated output mem-
bership functions. Also, for any input, the sum
of the membership values of two adjacent fuzzy
sets is one, and the membership value for any
T; > p2i,x; < —po; is equal to one. Since both
inputs have 5 fuzzy sets (N; = 5 and Ny = 5),
then the number of rules is M = 25. These rules
are shown in Table 1.

6. EXPERIMENTAL EVALUATION

Real-time control experiments on a well identified
direct-drive robot arm have been carried out to

MB<3’>
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Fig. 3. Output membership functions.

evaluate the performance of the proposed con-
troller. The two degrees of freedom direct—drive
robot arm model is given in Reyes and Kelly
(1997). It is worth mentioning that Coulomb and
static friction are also present in the robot joints,
however, we have decided to consider them as
unmodeled dynamics. Two types of experiments
were conducted: The first one was made with the
well known computed torque control with fixed
gains (Spong and Vidyasagar, 1989), and the sec-
ond one with the proposed sectorial fuzzy tracking
controller (2).

Special attention was paid in all cases to avoid
torque saturation; that is, we take into account
the actuator torque limits provided by the manu-
facturer: 7™** = 150 [Nm] and 7™** =15 [Nm)].

The desired position trajectory q, given by

1.57
94 = +
1.57
0.78[1 — =20 ] 4 0.17[1 — =20 ] sin (wy )
1.04[1 — e 18 ©°) 4+ 2.18[1 — e 18 ©°] sin (wt)
[rad] (9)

was inspired from the structure of desired tra-
jectories used by other authors for experimental
evaluation of control algorithms (Dawson et al,
1994; De Queiroz et al, 1996). In our application,
the second term of (9) was chosen in such a way to
exploit the arm in its fastest motion but without
invading the actuators saturating zone, and the
first one was chosen to add a step reference to
demand an initial big torque.

In expression (9), w; and wo represent the fre-
quency of desired trajectory for the shoulder and
elbow joints respectively. In our simulation tests,
we use wy = 15 rad/sec and wy = 3.5 rad/sec.

The final partitions of the universes of discourse,
for implementation of the proposed controller,
were: For the input q: p;, = {-180,-7,0,7,180}
[degrees] and p;, = {-90,-0.5,0,0.5,90} [de-
grees]; for the input g: p; = {—180, —45,0,45, 180}
= {-180,-90,0,90, 180}
[degrees/sec]; for the output <I>((~1,('~1): Py, (
{-"7000,

[degrees/sec] and p;

d,d,)

—2800, 0,2800,7000} [degrees/sec?] and
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Fig. 4. Position errors for the classical computed
torque control.
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Fig. 5. Applied torque to link 1 for the classical
computed torque control.
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Fig. 6. Applied torque to link 2 for the classical
computed torque control.

Posiiy = 1—6000,-3000,0,3000,6000}
[degrees/sec?], where each parameters set denotes
the support bounds of corresponding membership
functions.

The experimental results are depicted in Figures
4 to 9. Figures 4, 5 and 6 show position errors
and applied torques for the fixed gains computed
torque controller; Figures 7, 8 and 9 show the
same variables for the proposed sectorial fuzzy
tracking controller (2).

degrees
100

80
60
40

—-20 T T T I
0 2 4 6

M|

Fig. 7. Position errors for the proposed sectorial
fuzzy control.
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Fig. 8. Applied torque to link 1 for the proposed
sectorial fuzzy control.
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Fig. 9. Applied torque to link 2 for the proposed
sectorial fuzzy control.

As one can see, from Figure 4 the fixed gains
computed torque control can not reduce, near to
zero, the position errors due mainly to the effect
of the unmodeled friction on the joints. In this
case, the experimental results are really disap-
pointing because the components of the position
error have unacceptable large oscillatory behavior.
There was no way to reduce the position tracking
error by increasing the proportional gains without
saturating the actuators.



In contrast, the proposed sectorial fuzzy tracking
controller (2) present considerably smaller posi-
tion errors —see Figure 7— and its torques remain
inside the prescribed allowable maximum torque
for each actuator —see Figures 8 and 9- .

We may conclude that this kind of desired position
trajectory given by equation (9) (an step plus a
fast periodical signal) is too severe to be tracked
by the classical Computed—torque controller, how-
ever, in spite of the trajectory severity, the fuzzy
proposed controller presents a very good perfor-
mance.

7. CONCLUSIONS

We have proposed a sectorial fuzzy based motion
controller to cope with the tracking control of
robot manipulators. Using some properties of the
sectorial fuzzy controllers, Lyapunov theory as
well as LaSalle’s Theorem, we have proven —in
absence of friction— that the closed—loop system
is globally asymptotically stable. Experimental
results show the advantages of the proposed con-
troller.
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