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Abstract. Concerned is residual generation in systems with mild nonlinearities, that is, 
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1. INTRODUCTION 

Model-based methods of fault detection and isolation 
(diagnosis) rely on the idea of analytical redundancy 
(Willsky, 1976). The essence of this idea is that 
measured plant outputs are compared to ones 
predicted, with the model, from the measured or 
actuated inputs. Discrepancies, expressed as residuals, 
are ideally indications of faults, though in reality they 
are also affected by disturbances, noise and modeling 
errors. While a single residual may be sufficient to 
detect any fault in the system, the isolation of faults 
requires a set of residuals. These are subjected to 
mathematical manipulations to make them selectively 
sensitive to subsets of faults. The design of such 
enhanced residuals, referred to as structured, requires 
the knowledge of how the various faults act on the 
system. Decoupling from disturbances, whose effect 
on the system is known, is also easily included in the 
design of structured residuals. 

There are various methods to generate residuals and 
to enhance them for fault isolation. These methods 
include diagnostic observers, parity relations from the  
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state-space   model,   and    input-output    consistency   
relations. The linear theory of these approaches is 
well developed and their relationship is also rather 
well understood  

Diagnostic observers have been extensively studied 
by Frank and coworkers (Frank, 1990) . Parity 
relations were introduced by Chow and Willsky 
(1984), and extended to structured design by Gertler 
and Luo (1989) and by Staroswiecki and coworkers 
(1993). Input-output consistency relations have been 
investigated by Gertler and coworkers (Gertler and 
Singer, 1990 ; Gertler, 1998).  The equivalence of the 
various methods has been studied by several authors, 
see for example (Gertler, 2000).   

More recently, interest has been shifted to residual 
generation in nonlinear systems. Results on nonlinear 
observers have been published by Frank and 
coworkers (Alcorta-Garcia and Frank, 1997), 
Kinnaert (1999) and others. A purely algebraic 
approach to nonlinear residual generation has been 
reported by Staroswiecki and Comtet-Varga (2001) . 
Cocquempot and Christophe (2000) have 
demonstrated an extension of the parity space method 
to mild nonlinearities, in continuous time,  and 
showed the relationship of this approach to a class of 
nonlinear observers.  
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In this paper, we will investigate systems with mild 
nonlinearities, that is, nonlinearities which involve the 
inputs, outputs and faults but not the state. We will 
revisit the parity space method, in discrete time, and 
show how structured residuals can be designed if mild 
nonlinearities are present. Next we will investigate a 
number of fundamental links between the parity space 
and the input-output representations. Then, utilizing 
these results, we will develop a design method which 
finds structured residuals for the mildly nonlinear 
system entirely in the input-output framework. It will 
also be shown that the parity space and input-output 
designs lead to identical residuals also in this case. 

2. PROBLEM  STATEMENT 

Consider a dynamic system with outputs 
y(t)=[y1(t) … ym(t)]’, inputs u(t)=[u1(t)  u2(t)  … ]’  
and faults and disturbances  p(t)=[p1(t)  … pκ(t)]’. 
Assume that the system can be described by the n-th 
order discrete-time state-space model 

x(t+1) = A x(t) + B ϕϕϕϕ(t) + ΨΨΨΨ(t) p(t)          (1a) 

y(t) = C x(t)             (1b) 

where    ϕϕϕϕ(t) = ϕϕϕϕ [y(t), u(t)] = [ϕ1(t) … ϕk(t)]’       (2a) 

is a vector of  ‘pseudo-inputs’, which are nonlinear 
functions of the inputs and outputs, and  where 

ΨΨΨΨ(t) = ΨΨΨΨ[y(t), u(t)]              (2b) 

is an n⋅κ  nonlinear matrix function of the same. 
Though this system is nonlinear, the nonlinearities do 
not involve the state vector. Further, the faults p(t)
appear in a quasy-linear way, in that they are 
multiplied with a coefficient matrix which depends on 
the inputs and outputs (and, via these, on time).  As it 
has been shown by Isidori (1995), a broad class of 
nonlinear systems may be transformed into this form.  
       
System (1) may arise from a somewhat more general 
nonlinear system by linearization. Consider  

x(t+1) = A x(t) + B φφφφ(t)            (3a) 

y(t) = C x(t)             (3b) 

where    φφφφ(t) = φφφφ[y(t), u(t), p(t)] = [φ1(t) … φk(t)]’   (4)   

is set of more general pseudo-inputs with the faults 
also included in the nonlinear function. Now let us 
expand  φφφφ(t)  with respect to the faults as  

φφφφ(t) = ϕϕϕϕ(t) + ΓΓΓΓ(t) p(t)             (5) 

where now    ϕϕϕϕ(t) = φφφφ[y(t), u(t), 0]           (6a) 

are the nominal values of the pseudo-inputs φφφφ(t) and  

ΓΓΓΓ(t) = ∂φφφφ(t)/∂p(t)|p(t)=0 = [∂φi(t)/∂pj(t)] p(t)=0             (6b) 

is the fault Jacobian. System (3) is thus converted into 
system (1), with ΨΨΨΨ(t) =BΓΓΓΓ(t), but now an 

approximation is involved due to the linearization of 
the fault effect. 

The column-rank properties of the coefficient matrix  
ΨΨΨΨ(t)  and, consequently, of ΓΓΓΓ(t)  play an important 
role in the isolation of faults. Rank deficiencies may 
restrict the attainable residual structures while direct 
linear dependence between a pair of columns renders 
the concerned faults nonisolable (Gertler, 1998). Rank 
deficiencies may be due to a number of reasons, 
including linear relations among pseudo-inputs or 
among plant inputs and/or outputs. 

3. PARITY SPACE FORMULATION 

The parity space formulation of residual generation, 
introduced by Chow and Willsky for linear systems 
(Chow and Willsky, 1984), is easily extended to the 
mildly nonlinear system (1), or to (3) with linearized 
fault-effects. The Chow-Willsky scheme relies on the 
repeated application of the state-output  equation. 
With the model (1), and for a window-width of σ, the 
repeated equations lead to the matrix formulation 

Y(t) = J x(t-σ) + K ΦΦΦΦ(t) + ΛΛΛΛ(t) P(t)          (7) 

where 

Y(t)=[y’(t-σ) y’(t-σ+1) … y’(t-1)   y’(t)]’           (8a) 

ΦΦΦΦ(t)=[ϕϕϕϕ’(t-σ) ϕϕϕϕ’(t-σ+1) … ϕϕϕϕ’(t-1)   ϕϕϕϕ’(t)]’          (8b) 

P(t)=[p’(t-σ) p’(t-σ+1) …p’(t-1) p’(t)]’          (8c) 

J     = è C       ø            (9a) 
| CA       |    
| CA2 |
|  ......    |     
| CA     ú

K = è 0                0  ……….         ø
        | CB              0         |
        | CAB         CB    0     ……….          |
        |  ...................         |
        | CAσ-1B   CAσ-2B   …… CAB   CB 0 ú     
             (9b)
      
ΛΛΛΛ(t) = è      0                          0 ……….                ø     
           | CΨΨΨΨ(t-σ)                    0 ……….               |
           | CA ΨΨΨΨ(t-σ)         CΨΨΨΨ(t-σ+1)      0  ……     |
           |      ................               |
           |CAσ-1 ΨΨΨΨ(t-σ)  CAσ-2ΨΨΨΨ(t-σ+1)…CΨΨΨΨ(t-1)  0 ú
                     (9c) 

From (7), a primary pre-residual set is obtained as 

E(t) = Y(t) – K ΦΦΦΦ(t) = J x(t-σ) + ΛΛΛΛ(t) P(t)         (10)  

A scalar residual may then be generated by the 
transformation 



r(t) = W(t) E(t)             (11)  

where   W(t) = [wσ(t) wσ-1 wσ-2(t) … w0(t) ]      (12a) 

             wq(t) = [wq
1(t)    … wq

m(t) ]     q=0…σ   (12b) 

with the superscripts representing indices.   

For r(t)  to qualify as a residual, it must be decoupled 
from x(t-σ), and also from the disturbances in P(t). 
For it to serve as an element of a structured set, it 
must also be decoupled from an appropriate subset of 
the faults in P(t), while maintaining sensitivity to the 
remaining faults. For decoupling from  x(t-σ),  W(t)
must be orthogonal to all the n columns of  J. To 
decouple from the  j-th fault or disturbance, W(t)
must be orthogonal to all columns of the ΛΛΛΛj(t) matrix, 
composed of those columns  λλλλ.(t) of ΛΛΛΛ(t) which 
belong to the various occurances (time-shifts) of the j-
th fault (disturbance) : 

ΛΛΛΛj(t) = [ λλλλj (t) λλλλκ+j (t)   …   λλλλ (σ-1)κ+j (t) 0 ]         (13) 

(where κ is the number of faults /disturbances in the 
system). Note that   ΛΛΛΛj(t)  follows the exact structure 
of  ΛΛΛΛ(t), see (9c), with  ΨΨΨΨ(t-q),  q=1…σ, replaced by 
its j-th column  ψψψψj(t-q). For simultaneous decoupling 
from ρ  faults/ disturbances, W(t) must be orthogonal 
to a submatrix ΛΛΛΛ#(t) of ΛΛΛΛ(t), containing all the 
concerned columns: 

ΛΛΛΛ#(t) = [ΛΛΛΛj1(t)  …   ΛΛΛΛjρ (t)]            (14) 

That is, the complete decoupling conditions are 

W(t) [ J     ΛΛΛΛ#(t) ]  = 0            (15) 

This represents a total of   n + ρ.σ  homogeneous 
conditions for the   m(σ + 1) elements of the W(t)
vector. For a non-trivial solution 

m(σ + 1) ≥ n + ρσ + 1             (16) 

from which  

σ(m - ρ) ≥ n - m + 1            (17) 

Consider first m≤n. Then with ρ<m, the condition is 

σ ≥ (n – m + 1)/(m - ρ)            (18) 

With ρ≥m, there is no finite non-negative solution. 
Now consider m>n. In this case, the rank of each 
group of ρ columns in ΛΛΛΛ(t) is min(ρ,n), so the number 
of faults from which selective decoupling is possible 
is ρ<n. With this, σ=1 is the minimum solution. 

The solution requires the assignment of one (or more) 
free paramaters. With only one free parameter,  the 
direction of the transformation  W(t)  is defined and 
the choice of the parameter only scales the solution.  

A particular  residual structure is attainable if, while 
decoupled from the selected faults and disturbances, 

the residual remains sensitive to all the other faults. 
This requires that  

Rank [ΛΛΛΛ#(t)       ΛΛΛΛg(t) ] > Rank ΛΛΛΛ#(t)           (19) 

for any fault-related ΛΛΛΛg(t)  outside ΛΛΛΛ#(t). Because of 
the way  the  ΛΛΛΛ(t)  matrix is constructed, see (9c), any 
linear dependence among the columns of  ΨΨΨΨ(t-q)  is 
transferred to ΛΛΛΛ(t). Define 

ΨΨΨΨ#(t-q) = [ψψψψj1 (t-q)  ... ψψψψjρ(t-q) ]           (20) 

along the lines of (15) . Then (20) requires  that  

Rank[ΨΨΨΨ#(t-q) ψψψψg (t-q)] > Rank ΨΨΨΨ#(t-q)           (21) 

for any fault-related column  ψψψψg (t-q)  outside  ΨΨΨΨ#(t-q), 
for at least one q between 1 and σ. This implies ρ < n.  

       
Note that r(t), as defined here, is a perfect residual, in 
the sense that its value is zero in the absence of faults 
and disturbances, as long as the nonlinear model (1) is 
a correct description of the system. That is, any 
linearization of the fault-effects does not influence the 
accuracy of the residual, only its decoupling from the 
selected faults and disturbances. 

4. INPUT-OUTPUT FORMULATION 

The input-output relationship, derived from (1), is 

y(t) = [G(z)/h(z)] ϕϕϕϕ(t) + [F(z)/h(z)] ΨΨΨΨ(t) p(t)         (22)                             

where 

F(z) = F1z-1+…+Fnz-n= CAdj(I - z-1A)z-1               

G(z) = G1z-1+…+Gnz-n  = CAdj(I - z-1A)z-1B = F(z)B

h(z) = 1 + h1 z-1+…+ hn z-n  =  Det(I - z-1A)           (23) 

Note that we interpret the shift operator applied to an 
expression with a time-varying coefficient as  

z-1 ΨΨΨΨ(t) p(t) =z-1 [ΨΨΨΨ(t) p(t)] = ΨΨΨΨ(t-1) p(t-1)          (24) 

Eq. (26) gives rise to the primary residual 

e(t)=y(t) - [G(z)/h(z)]ϕϕϕϕ(t)=[F(z)/h(z)]ΨΨΨΨ(t)p(t)      (25)      

where the mid-section is the computational form and 
the right-hand side is the fault-effect form of the 
residual. Note that F(z), G(z) and h(z), as defined in 
(23) are, in general, not relative prime; they may 
contain an excess pole/zero polynomial ϑ(z). 

We will seek structured residuals by the 
transformation 

r(t) = w(z, t) e(t)             (26) 

where   w(z, t)=w0(t)+w1(t)z-1+...+wσ(t)z-σ          (27)

The transformation  w(z, t) will be so designed that 
the residual r(t) is decoupled from the selected faults 
and disturbances. First, however, several links 



between the parity-space and the input-output 
description will be explored.

5. RELATIONSHIP BETWEEN PARITY SPACE 
AND INPUT-OUTPUT DESCRIPTIONS 

The Chow-Willsky scheme and the input-output 
model are two descriptions of the same system. 
Naturally, they are related in several ways. Two of 
those relationships will be explored below. One 
concerns the generation of the input-output model by 
a transformation applied to the Chow-Willsky model. 
The other reveals an important property of the de-
coupling transformation, designed in the parity space 
framework, in relation to the input-output model. 

Lemma 1. The Chow-Willsky model (7), with the 
transformation 

[hn Im …   h1 Im Im ]Y(t) =           (28) 

[hn Im … h1 Im Im ][J x(t-n) + K ΦΦΦΦ(t) + ΛΛΛΛ(t) P(t )]  

where  Im is an m.m  unit matrix, yields the input-
output model  (22) in the polynomial form 

h(z)y(t) = G(z) ϕϕϕϕ(t) + F(z) ΨΨΨΨ(t) p(t)          (29) 

The proof, which utilizes the Cayley-Hamilton 
theorem, will not be presented here. 

This Lemma also  provides an alternative expression 
for the Fq and Gq  matrices  (compare to (23)) :  

           q - 1 
Fq = C ääää hµ Aq-1-µ     Gq = Fq B q=1…n         (30) 
           µ = 0 

Lemma 2. Consider a transforming vector  W(t) = 
[wσ(t)   wσ-1(t)   …   w1(t) w0(t) ], with any window-
width σ>0, designed to be orthogonal to the  J  matrix 
of appropriate size. Form a vector polynomial  w(z, t) 
= w0(t)+w1(t)z-1+…+wσ-1(t)z-σ+1 +wσ(t)z-σ. Then the 
following hold : 

a.   w(z, t) F(z) = αααα(z, t) h(z)           (31) 

 where   αααα(z, t) = αααα1(t)z-1  + … + αααασ(t)z-σ        (32a) 

ααααq (t) = [αq
1(t) … αq

n(t)]    q=1…σ        (32b) 

b. If w(z, t)  is applied to the input-output primary  
residual  (25) then the transformed residual is 

r(t)=w(z, t)y(t) - ββββ(z, t)ϕϕϕϕ(t) = αααα(z, t)ΨΨΨΨ(t)p(t)        (33) 

where ββββ(z, t)= αααα(z, t)B, and this is identical with the 
residual obtained by applying W(t) to the parity space 
pre-residual (10) .   

Proof. The proof is constructive. Write the w(z, t)F(z)
product expressing Fq by (30) and then simplify it 
utilizing the orthogonality equation W(t)J =0 and the 
Cayley-Hamilton relation. Simple manipulations yield 

w(z, t) F(z) = [w0 C z-1 + (w1 C  + w0 CA) z-2 + … 

    + (wσ-1C+wσ-2 CA+…+w0CAσ-1 )z-σ] h(z)          (34) 

This proves (31). Then (33) follows by 

r(t)=w(z, t)e(t)=w(z, t)y(t) - w(z, t)[G(z)/h(z)]ϕϕϕϕ(t)

= w(z, t)y(t) - αααα(z, t)Bϕϕϕϕ(t)           (35) 

Finally, from (34)  
           q - 1 
ααααq(t) = ääää  wµ(t) CAq-1-µ         q=1…σ          (36) 
           µ = 0 

Recall that  ααααq(t)  is the coefficient of ΨΨΨΨ(t-q)p(t-q)
and  ααααq(t)B  is that of   ϕϕϕϕ(t-q). A comparison with the 
Chow-Willsky scheme, (9)-(12), reveals that (36) 
yields exactly the same as the respective coefficients 
in that scheme. Also, the coefficient of y(t-q) is 
clearly  wq  in both schemes. Thus the two residuals 
are, indeed, identical.         ♣

Lemma 2 has two important consequences : 

1. The transformation W(t), computed in the parity 
space framework, can be used, after reformatting 
into w(z, t), to obtain the residual in the input-
output framework.  

2. Equations (31) and (33) will serve as the basis for 
a design algorithm to compute the transformation 
w(z, t) directly in the input-output framework, 
without even obtaining the state-space model of 
the system. This will be done in the next section. 

6. DIRECT INPUT-OUTPUT TRANSFORMATION 

In this section, we develop an algorithm to compute 
the transformation w(z, t)  directly in the input-output 
framework. The algorithm rests on Eqs. (31) and (33) 
and consists of  two steps  

1. First we design, at least partially, a set of   αααα1(t) …  
αααασ(t)  vectors, so that they provide decoupling from 
all occurances of the fault and disturbance subset 
p#(t),  that is, from  p#(t-1) … p#(t-σ),  by being 
orthogonal to the  ΨΨΨΨ#(t-1) … ΨΨΨΨ#(t-σ) submatrices, as 
suggested by (33) ; 

2. Then we design the w(z, t)  transformation so that 
(31) is satisfied, that is, w(z, t)F(z) is divisible by h(z) 
and the quotient is  αααα(z, t)  computed in the first step. 

Step 1 : Design of the  α(z, t)  vector. Expand the 
right-hand side of  (33)  as 

r(t)=αααα1(t)ΨΨΨΨ(t-1)p(t-1)+…+ αααασ(t)ΨΨΨΨ(t-σ)p(t-σ)       (37) 

To decouple this residual from p#(t-1) … p#(t-σ), the  
αααα1(t) … αααασ(t)  vectors have to be orthogonal to the 
respective coefficient matrices  ΨΨΨΨ#(t-1) … ΨΨΨΨ#(t-σ),  



the latter containing the columns which belong to the 
selected fault/disturbance subset. That is,  

ααααq(t) ΨΨΨΨ#(t-q) = 0            q=1…σ          (38) 

Let the number of faults/disturbances in p#(t)  be ρ
(as before). The vectors  ααααq(t)  contain  n  elements 
each. Thus, provided that at least one of the matrices 
ΨΨΨΨ#(t-q) has full rank, the homogeneous conditions 
(38) can only be satisfied in a nontrivial way if  ρ < n. 
(Note that this is the same condition found for the 
Chow-Willsky scheme.) Eq. (38) leaves n-ρ elements 
of each of the  ααααq(t)  vectors free; we are keeping 
these undefined until the second step of the design. 
Here we only express the rest of the elements in terms 
of the free ones. Decompose  ααααq(t)  and ΨΨΨΨ#(t-q)  as 

ααααq(t)=[ααααq
I(t) ααααq

II(t)]    ΨΨΨΨ#(t-q)= èΨΨΨΨ#
I(t - q) ø       (39) 

              î               î
                      êΨΨΨΨ#

II(t - q)ú
where  ααααq

I(t)  contains the free parameters and  ααααq
II(t)

the rest, and  ΨΨΨΨ#(t-q)  is partitioned according-ly. 
Then  ααααq

II(t)  can be expressed in terms of  ααααq
I(t)  as 

ααααq
II(t)= -ααααq

I(t)ΨΨΨΨ#
I(t-q)[ΨΨΨΨ#

II(t-q)]-1    q=1…σ          (40) 

With (39) and (40),  ααααq(t)  may be written as  

ααααq(t)=ααααq
I(t)[In-ρ   -ΨΨΨΨ#

I(t-q)[ΨΨΨΨ#
II(t-q)]-1]=ααααq

I(t) ΞΞΞΞ(t-q)       

q = 1 … σ            (41)       

where In-ρ  is a unit matrix of size n-ρ  and  ΞΞΞΞ(t-q)  is 
as defined in the equation. Numerically  the same 
matrix  ΞΞΞΞ(t-q)  is used  in multiple samples, first as  
ΞΞΞΞ(t-1),  then as  ΞΞΞΞ(t-2), etc. until  ΞΞΞΞ(t-σ), so that only 
one such expression needs to be newly computed at 
each sample.    

Step 2 : Design of the w(z, t) vector. The second step 
of the design relies on (31). The excess pole-zero 
factor ϑ(z) can be canceled out from the equation. 
Further, to avoid difficulties with zero-valued poles, 
positive-power polynomials will be used here. Thus

w+(z, t) F+(z) = αααα+(z, t) h+(z)          (42) 

where    F+(z)=zνF(z)/ϑ(z)     h+(z)=zνh(z)/ϑ(z)

             w+(z, t)=zσw(z, t)       αααα+(z, t)=zσαααα(z, t)    (43) 

and (n-ν) is the order of the excess pole/zero 
polynomial ϑ(z). Eq . (42) will be solved by assigning 
numerical values to the variable z. The polynomials 
on either side of  (42) are of degree ν+σ-1, thus the 
equation must be  satisfied  at  ν+σ  different  values  
of   z . We will pick the  ν  roots of  h+(z),  ζ1 … ζν , 
and  σ  additional values, z1 … zσ.

At a pole ζi  of  h+(z),   (42) becomes 

w+(ζi , t) F+(ζi  ) = 0            (44) 

Here we make the following observations: 

Observation 3. a. For  any  single pole ζi of  h+(z),   
RankF+(ζi )  does not exceed the total multiplicity of  
ζi in h(z). This follows from the way how excess 
poles/zeros are created, see Gilbert’s method, e.g. in 
(Kailath, 1980). 

b. For  any pole ζi which has a multiplicity of  κ in 
h+(z), (44) is supplemented with the derivative 
equations 

ds [w+(z, t) F+(z)]/ dzs|        = 0     s =1…κ-1          (45) 
                      | z=ζi

This follows from the fact that, at a multiple pole, the 
first κ derivatives of the righ-hand side in (44) are 
zero. 

Cases a. and b. may occur in combination. Thus the 
number of scalar equations (44) represents for any 
pole ζi , does not exceed the total multiplicity of ζi in 
h(z), and the total number of scalar conditions from 
(44) does not exceed n.   ♣

The remaining solution equations arise from  (42) by 
substituting z=z i , i=1…σ : 

w+(zi, t)F+(zi) - αααα+(zi, t)h+(zi) = 0     i=1…σ          (46) 

where the zi  values are arbitrary but distinct and 
different from any pole ζi . With (41), this may be 
rewritten in a more direct form as 

σ σ
ä   zi

σ-qwq(t)F+(zi) - ä   zi
σ-q ααααq

I(t)ΞΞΞΞ(t-q)h+(zi) = 0             
q=0                                   q=1 

i = 1…σ             (47) 

Eq . (44) (alone or together with (45)) represents up to 
n scalar equations while (47), with n columns in 
F+(zi), represents n.σ scalar equations. Notice that 
both (44) and (47) are homogeneous; the latter since  
αααα+(zi, t)  is completely expressed  in terms of the free 
parameters  ααααq

I(t). There are  m(σ+1)  unknowns in 
w+(z, t)   and  σ(n-ρ)  free parameters in   αααα+(z, t). 
Thus the condition governing the window-width is 

m(σ+1) + σ(n-ρ) ≥ n + nσ + 1           (48) 

yielding 

σσσσ ≥ (n – m + 1)/(m - ρ)            (49)  

This is identical with the window-width obtained for 
the Chow-Willsky scheme, see (18). 

The equations being homogeneous, the solution 
requires the assignment of the parameters which stay 
free in Step 2. This is a single parameter if (49) is 
satisfied in equality and more if it is met in inequality. 



Computing the residual. The algorithm described 
above yields the polynomials w(z, t) and αααα(z, t). The 
most straightforward computation of the residual 
would require the polynomial ββββ(z, t) = αααα(z, t) B  but  
B is not known in the input-output framework. There 
are two possible paths : 

a) First the primary residual is computed as  

e(t) = y(t) - [G(z)/h(z)]ϕϕϕϕ(t)           (50) 

then the transformed residual is obtained as  

r(t) = w(z, t)e(t)             (51) 

By this approach, the cancellation of the h(z) 
polynomial takes place numerically. This poses 
no problem if the plant is stable but may lead to 
numerical instability if the plant is unstable. 

b) First the  ββββ(z, t)  polynomial is computed by 
polynomial division from (31), with G(z) as 

ββββ(z, t) = ββββ1(t)z-1+…+ββββσ(t)z-σ = w(z, t)G(z)/h(z)    (52) 

and then the residual is obtained as  

r(t) = w(z, t)y(t) - ββββ(z, t)ϕϕϕϕ(t)                   (53) 

This is computationally more demanding than 
approach a) but is safe, even if the plant is 
unstable, because h(z) is cancelled algebraically. 

7. CONCLUSION 

In this paper, we have studied discrete systems with 
mild nonlinearities, that is, nonlinearities implying the 
inputs, outputs and faults but not the states. Our 
objective has been  to design structured residuals, 
ones that are selectively sensitive to subsets of faults 
and are decoupled from disturbances. For such mildly 
nonlinear systems, the fault- and disturbance-free 
residuals are always computed exactly. Further, if the 
fault and disturbance effect appears linearly, with a 
nonlinear coefficient, then fault isolation and 
disturbance decoupling is exact, and the design 
procedure is linear but needs to be repeated at every 
sample. If the faults and disturbances appear 
nonlinearly then, by linearization,  the same linear 
procedure may be applied but decoupling and 
isolation become approximate.  

We first applied the Chow-Willsky scheme (parity 
space method) to such systems. Then we exposed two 
important links between the linear part of the Chow-
Willsky scheme and that of the input-output rep-
resentation. Based on these results, we developed an 
algorithm which generates the residual transformation 
directly in the input-output framework. The two 
approaches produce identical residuals. The input-
output design is slightly more complex but it does not 
require the state-space representation of the system. 
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