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Abstract: In this paper, we present a neural network based control scheme for end-
effector path tracking control of a system consisting of a rigid micro manipulator
attached at the end of a flexible macro manipulator. The objective is to suppress
vibrations in the macro manipulator and at the same time achieve desired motions
of the end-effector of the micro manipulator. A two-layer feedforward neural network
is utilized to approximate the dynamic behavior of the macro-micro manipulator
(M3) system in real time, and the controller is developed without any need for prior
knowledge of the dynamics. A weight-tuning algorithm for the neural network is
derived using Lyapunov stability theory. It is shown that both the path tracking error
and the damped vibrations are uniformly ultimately bounded under this new control
scheme. Simulation results are presented and compared to those obtained using a PD
joint controller.
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1. INTRODUCTION

Long-reach manipulators have been proposed for
a range of applications that include Space Station
maintenance and operation, and nuclear waste
disposal. In such applications, the lightweight
structure of long-reach manipulators allows the
actuators to move faster and carry heavier loads
than conventional rigid manipulators. However,
the significant structural flexibility makes it dif-
ficult to control the position and force at the end-
effector accurately and reliably. The incorporation
of a small, rigid micro manipulator at the tip of
a large, flexible macro manipulator has been pro-
posed as a solution to achieve the desired accurate
and robust performance. In order to utilize the
macro-micro manipulator (M3) system effectively,

1 This research was supported by Natural Sciences and
Engineering Research Council (NSERC) of Canada under
grant STPGP 215729-98.

one must address the problem of controlling and
compensating for vibrations resulting from the
flexibility in the macro-manipulator links.

In recent years considerable research work has
been done to address different aspects of the
M3 system. Magee and Book (1995) considered
command filtering to prevent excitation of the
compliant macro manipulator dynamics while the
micro manipulator performs a specified task. Chi-
ang et al. (1991) showed that a proper mechanical
design of the micro arm can avoid non-minimum
phase zeros so that a stable, high-bandwidth
controller can be implemented. Yoshikawa et al.
(1994) utilized the redundancy of the micro ma-
nipulator to compensate for the tracking error
resulting from the deformation of the macro ma-
nipulator. Lew and Trudnowski (1996) developed
a flexible-motion compensator which uses feed-
back of strain gauge measurements mounted on
the flexible arm. Torres et al. (1996) proposed
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the Pseudo-Passive Energy Dissipation (P-PED)
method to dissipate the macro-manipulator vi-
brations. Moallem and Patel (1999) proposed a
decoupling control scheme for rapid positioning of
the end-effector of the micro-manipulator. How-
ever, all of these control methods require exact
knowledge of the dynamics of the M3 system.
Since generally it is very difficult to establish an
accurate dynamic model for an M3 system, the
performance of these methods may be unsatisfac-
tory for accurate operation.

The objective of the control scheme described in
this paper is to suppress vibrations in the macro
manipulator while achieving stable desired mo-
tions of the end-effector of the micro manipulator.
Unlike all of the above mentioned papers, a two-
layer feedforward neural network is utilized in this
paper to estimate the nonlinear dynamic behavior
for the M3 system, and the resulting estimates
are used to develop controllers for the macro and
micro manipulators without any need for prior
knowledge of the dynamic model of the M3 sys-
tem. Under this neural network based control
scheme, both the tracking error of the end-effector
of the micro manipulator and the vibration in
the macro manipulator are rapidly suppressed and
constrained within an arbitrarily small vicinity
of the origin, while the magnitudes of the joint
torques are kept bounded. Stability of the control
scheme is proved using Lyapunov stability theory.
Simulation results are presented for a planar re-
dundant M3 system.

2. MODEL AND ERROR DYNAMICS OF AN
M3 SYSTEM

2.1 Model of an M3 System
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Fig. 1. Schematic of a macro-micro manipulator

Consider a system consisting of a macro manipula-
tor with M flexible links and a micro manipulator
with m rigid links (Figure 1). Let θM ∈ RM

and θm ∈ Rm be the joint variable vectors of
the macro and micro manipulators, respectively,
δ ∈ Re be the flexural displacement vector, and

p ∈ Rn be the end-effector position vector in
the n-dimensional task space. We assume m ≥ n
and rank(Jθm) = n for the micro manipulator.
The end-point vector p is a nonlinear function of
θM , θm and δ:

p = p(θM , θm, δ) (1)

and the small displacements p̃ of the end-point
vector can be expressed as

p̃ = JθM
θ̃M + Jθm

θ̃m + Jδ δ̃ (2)

where JθM
∈ Rn×M , Jθm

∈ Rn×m and Jδ ∈ Rn×e

are Jacobian matrices of p with respect to θM , θm

and δ respectively, and θ̃M , θ̃m and δ̃ denote small
changes in θM , θm and δ respectively.

Denote x = [θT
M , θT

m, δT ]T and τ = [τT
M , τT

m, 0]T

with τM ∈ RM and τm ∈ Rm being the control
torques for the macro and micro manipulators,
respectively. Using Lagrange’s method, the equa-
tion of motion of the M3 system can be written
as follows (Moallem and Patel, 1999):

M(x)ẍ + C(x, ẋ)ẋ + G(x) = τ (3)

where M is the inertia matrix, C is the matrix
of the Coriolis and centrifugal forces, G is the
vector of gravity and elastic torques. Note that
the dynamics have an important property which
ensures that, in the parameterization, Ṁ(x) −
2C(x, ẋ) is skew symmetric.

2.2 Tracking Error Dynamics

Denote the desired trajectories of θM , δ, θm gen-
erated from the desired end-effector trajectory pd

as
xd = [θT

Md, θ
T
md, δ

T
d ]T (4)

The error vector is given by:

x̃ , x− xd =
[
θ̃T

M , θ̃T
m, δ̃T

]T

(5)

where θ̃M = θM − θMd, δ̃ = δ − δd, θ̃m =
θm − θmd. The filtered tracking error r =[
r1

T , r2
T , r3

T
]T for the whole system is defined

by

r1 , ˙̃
θM + Λ1θ̃M + κG

˙̃
δ + Λ1κGδ̃ (6)

r2 , ˙̃p + Λ2p̃ (7)

r3 , ˙̃
δ + Λ3δ̃ (8)

where Λi, i = 1, 2, 3, are symmetric positive-
definite matrices and κ > 0 is a design parameter.
Substituting eqn.(2) into eqn. (7) yields

r2 = JθM

˙̃
θM + Jθm

˙̃
θm + Jδ

˙̃
δ + J̇θM θ̃M + J̇θm θ̃m + J̇δδ

+ Λ2(JθM
θ̃M + Jθm θ̃m + Jδ δ̃)

(9)

The vector r can be expressed in the form

r = Γ ˙̃x + Γ̇x̃ + ΛΓx̃ (10)



where Λ = diag{Λ1, Λ2, Λ3} and

Γ =




IM 0 κG
JθM

Jθm Jδ

0 0 Ie


 (11)

with IM and Ie the M × M and e × e identity
matrices, respectively.

Differentiating r in (10) and utilizing (3), we can
express the dynamics of the M3 system in terms
of the filtered tracking error r by

MΥṙ + (CΥ + MΥ̇)r = f + τ (12)

where

Υ ,




IM 0 −κG
−J−1

θm
JθM

−J−1
θm

J−1
θm

(Jδ − κJθM
G)

0 0 Ie




(13)
and f is an unknown nonlinear function of the
robot parameters such as the inertia, centrifugal
and Coriolis terms, DH parameters, etc., of the
M3 system, and is given by

f(u) = −G−Mẍd − Cxd + MΥ(2Γ̇ ˙̃x + Γ̈x̃+

Λ(Γ ˙̃x + Γ̇x̃)) + CΥ(Γ̇x̃ + ΛΓx̃) + MΥ̇r

(14)

where u can be chosen as

u ,
[
x̃T , ˙̃xT , xT

d , ẋT
d , ẍT

d

]T (15)

Expressing the error dynamics as (12) will enable
us to derive a neural network based scheme in the
next section.

3. NEURAL NETWORK CONTROL SCHEME

3.1 Controller Design

According to the universal approximation prop-
erty of neural networks, there exists a two-layer
neural network such that

f(u) = WT
1 σ(WT

2 u) + ε (16)

where W1 and W2 are ideal target weights, σ is
the vector of activation functions, and ε is the
approximation error bounded on a compact set
by εN , i.e., ‖ε‖ < εN . Define the matrix of all the
weights in the neural network as

W ,
[
W1 0
0 W2

]
(17)

We assume that on any compact subset of Rn, the
ideal neural network weights are bounded, i.e.,

‖W‖F ≤ bW (18)

where ‖ · ‖F denotes the Frobenius norm.

Let an estimate of f(u) using the neural network
be given by

f̂(u) = ŴT
1 σ(ŴT

2 u) (19)

with Ŵ1 and Ŵ2 the actual values of the weights
of the neural network determined by the learning

algorithm of the network. Note that f̂ can be
partitioned into three blocks, f̂ = [f̂T

1 , f̂T
2 , f̂T

3 ]T ,
with f̂1 ∈ RM , f̂2 ∈ Rm and f̂3 ∈ Re.

The structure of the error dynamics (12) and
the subsequent stability analysis motivated us to
design the neural network based controller for the
M3 system as follows:

τM = −f̂1 + ξ1 − r̄1r̄
T
3

‖r̄1‖2 + ε
· (f̂3 − ξ3 + K3r̄3)−K1r̄1

(20)

τm = −f̂2 + ξ2 −K2r̄2 (21)

ξi = −kW (‖Ŵ‖F + bW )r̄i, i = 1, 2, 3 (22)

r̄ = [r̄T
1 , r̄T

2 , r̄T
3 ]T = Υr (23)

where Ki, i = 1, 2, 3, are positive definite ma-
trices, ε > 0 and kW > 0 are positive design
constants, and Υ is given by (13). Note that ξi,
i = 1, 2, 3, are robustifying signals incorporated to
compensate for approximation errors of the neural
network and enhance the tracking performance of
the M3 system.

Based on the control laws defined by (20)-(23)
and inspired by the modified Hebbing tuning rule
for tracking control of rigid-link robotic systems
(Yesildirek and Lewis, 1995), we propose a weight-
tuning algorithm for the neural network that
achieves stable tracking control of the flexible
M3 system. The algorithm is determined by the
following equations:

˙̂
W1 = Pσ(ŴT

2 u)r̄T − µP‖r̄‖Ŵ1 (24)
˙̂

W2 = R‖r̄‖u · (σ(ŴT
2 u)

)T − µR‖r̄‖Ŵ2 (25)

r̄ = [r̄T
1 , r̄T

2 , r̄T
3 ]T = Υr, (26)

r̄1 ∈ RM , r̄2 ∈ Rm, r̄3 ∈ Re

where P = PT and R = RT are any constant
symmetric positive-definite matrices, µ > 0 is a
small scalar design parameter, and Υ is a nonlin-
ear transformation given by (13). This algorithm
is derived by an extension of Lyapunov theory, and
it will be shown in the next section that under the
control scheme and weight-tuning rule proposed
above, the tracking error for the M3 system can
be uniformly driven to an arbitrarily small region
around the desired trajectory. A block diagram of
the M3 control system is shown in Figure 2.

3.2 Stability Analysis

To analyze the stability of the proposed control
scheme, choose the Lyapunov function candidate
as

V (r, W̃1, W̃2, t) =
1
2
rT ΥT MΥr +

1
2
tr{W̃T

1 PW̃1}

+
1
2
tr{W̃T

2 RW̃2}
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Fig. 2. Block diagram of the M3 control system

where tr{·} denotes the trace of a square matrix.
Differentiating V along the solution of the error
dynamics yields:

V̇ =
1
2
rT ΥT (Ṁ − 2C)Υr + rT ΥT (f + τ)

+ tr{W̃T
1 P−1 ˙̃W1}+ tr{W̃T

2 R−1 ˙̃W2}
Using the skew-symmetric property of Ṁ − 2C
and the control laws defined by (20) and (23), we
obtain

V̇ = r̄T
1 (f1 + τM ) + r̄T

2 (f2 + τm) + r̄T
3 f3

+ tr{W̃T
1 P−1 ˙̃W1}+ tr{W̃T

2 R−1 ˙̃W2}
≤ −r̄T Kr̄ + r̄T f̃ + r̄T ξ

+ tr{W̃T
1 P−1 ˙̃W1}+ tr{W̃T

2 R−1 ˙̃W2}
where K = diag{K1,K2,K3} and f̃ = f − f̂ .

Substituting (14) and (19) into the above inequal-
ity and applying the trace property that aT b =
tr{baT } yields

V̇ ≤ −r̄T Kr̄ + tr
{

W̃1

(
P−1 ˙̃W1 + σ(ŴT

2 u)r̄T
)}

+ tr{W̃T
2 R−1 ˙̃W2}+ r̄T ξ + r̄T WT

1 σ̃ + r̄T ε

where we denote σ̃ , σ(WT
2 u)− σ(ŴT

2 u).

Invoking the weight update laws and applying the
trace property tr{AT B} ≤ ‖A‖F‖B‖F, we obtain

V̇ ≤ −r̄T Kr̄ + tr{µ‖r̄‖W̃T
1 Ŵ1}

+ tr
{
W̃T

2 (µ‖r̄‖Ŵ2 − ‖r̂‖u
(
σ(ŴT

2 u)
)T

u)
}

+ r̄T ξ + r̄T WT
1 σ̃ + r̄T ε

≤ −λmin(K)‖r̄‖2 + µ‖r̄‖ · ‖W̃‖F(bW − ‖W̃‖F)

+ ‖r̄‖ · ‖W̃2‖F · ‖u ·
(
σ(ŴT

2 u)
)T ‖F

+ r̄T ξ + ‖r̄‖ · ‖W1‖F · ‖σ̃‖+ ‖r̄‖εN

where λmin(K) is the minimum eigenvalue of K.

Applying ‖u‖ ≤ k0 + k1‖r‖ and substituting (22)
into the above inequality yields

V̇ ≤ −‖r̄‖{λmin(K)‖r̄‖ − µ‖W̃‖F · (bW − ‖W̃‖F)

− ‖W̃‖F(k0 + k1‖r̄‖)√nh

+ kW (‖Ŵ‖F + bW )‖r̄‖ − (
√

nhbW + εN )
}

where nh is the number of the neurons in the
hidden layer of the network, and the inequality
‖σ(ŴT

2 u)‖ <
√

nh for the sigmoid activation has
been used.

Choosing kW > k1
√

nh, we have

V̇ ≤ −‖r̄‖{λmin(K)‖r̄‖ − µ‖W̃‖F · (bW − ‖W̃‖F)

− k0
√

nh · ‖W̃‖F − (
√

nhbW + εN )
}

≤ −‖r̄‖{λmin(K)‖r̄‖+ µ(‖W̃‖F − k2)2 − k3

}

where

k2 =
µbW + k0

√
nh

2µ
=

k0
√

nh

2µ
+

bW

2
k3 = µk2

2 +
√

nhbW + εN

Therefore V̇ < 0 if ‖r̄‖ > k3
λmin(K) , or equivalently,

‖r‖ >
k3

λmin(K)‖Υ‖ ≥
k3

λmin(K)bΥ
, br

or

‖W̃‖F > k2 +

√
k3

µ
, bW̃

Here br and bW̃ denote the regions of convergence
for the filtered tracking error and the weight es-
timation error respectively. V̇ becomes negative
and V decreases outside the compact set defined
by ‖r‖ ≤ br and ‖W̃‖F ≤ bW̃ . According to the
LaSalle extension of Lyapunov analysis, this im-
plies that both r and W̃ are uniformly ultimately
bounded (UUB).

3.3 Bounds on Control Torques

It is pointed out in (Chiang et al., 1991; Moallem
and Patel, 1999) that an M3 system having a
rigid micro manipulator attached at the end of a
flexible macro manipulator can give nonminimum-
phase characteristics under some configurations.
For non-minimum-phase systems, perfect tracking
or asymptotic tracking cannot be achieved by
finite control inputs (Slotine and Li, 1991). Our
control strategy for the M3 system is to drive and
maintain the tracking errors within an arbitrar-
ily small vicinity around the nominal trajectory
while keeping the magnitudes of the control input
torques bounded. In the previous section, we have
established the control torques and weight tuning
rules for uniformly bounded tracking. It is then re-
quired to consider the boundedness of the control
inputs as the filtered tracking error r(t) becomes
very small or as r(t) → 0.

As shown in Section 3.2, both the target weights
and their estimation errors are bounded. There-
fore, the neural network estimate of the nonlinear
function f is also bounded. Let ‖f̂‖ ≤ bf and
‖r‖ ≤ br. By the Cauchy-Schwartz inequality we
have



‖τM‖ ≤ ‖f̂1‖+
‖r̄1‖‖r̄3‖

ε

(‖f̂3‖+ λmax(K3)‖r̄3‖
)

+ λmax(K1)‖r̄1‖

≤ bf +
b2
r

ε
(bf + λmax(K3)br) + λmax(K1)br

≤ (1 +
b2
r

ε
)2(bf + λmax(K)br) , bM

and

‖τm‖ ≤ ‖f̂2‖+λmax(K2)br ≤ bf+λmax(K)br , bm

where λmax(Ki) is the maximum eigenvalue of Ki,
i = 1, 2, 3.

4. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed
control scheme, we have applied it to a planar
M3 system with one flexible macro-arm and three
rigid micro-arms as depicted in Figure 1. The
flexible link has a thickness of 1.3 mm, width of
3.14 cm, length of 1 m, mass of 1 kg and flexural
rigidity of 20 Nm2. The rigid links have equal
lengths of 0.2 m and equal masses of 0.2 kg.

The assumed-modes method with clamped-mass
boundary conditions was used to model the M3

system. Two orthonormal mode shapes were taken
into account for simplifying the inertia and stiff-
ness matrices. The resulting natural frequencies of
vibration are 2.50 Hz and 15.6 Hz.

The desired trajectory pd = [xd, yd]T for the end-
effector is chosen as

xd = 0.3 sin(t) + 0.80
yd = 0.3 cos(t) + 0.39

(27)

which is a circle centered at (0.80, 0.39) with a
radius of 0.3 m. The desired joint velocity θ̇d is
given by

θ̇d = J+ṗd + (I − J+J)η, (28)

where J+ is the pseudo-inverse of [JθM , Jθm ] and
η is an arbitrary 4 × 1 vector. The desired joint
trajectory θd is obtained by integrating the above
equation.

The neural network used for the simulation em-
ploys 30 input units for u =

[
x̃T , ˙̃xT , xT

d , ẋT
d , ẍT

d

]T ,
6 output units for f = [f1, f2, f3]T , and 10 hid-
den units with sigmoidal activation functions for
achieving an adequate learning capability. This
network has a total of 376 weights which require
no prior knowledge of the parameters either of the
M3 system dynamics or of the control scheme,
and were simply initialized at zero and updated
on-line.

The parameters used in the simulation are listed
as follows:
Ki = diag{30, 10, 10, 10, 15, 15}, i = 1, 2, 3.
kw = diag{5, 0.5, 2, 0.5, 10, 10}, P = 10I11,

Λ = diag{10, 2, 2, 2, 15, 10}, R = 10I31,
µ = 0.5, bw = 10, ε = 0.01, κ = 1.0

Figures 3 to 6 compare the simualation results of
tracking control of the M3 system using the neural
network based controller against those using a PD
controller. The PD controller was implemented by
shutting down the neural network in the outer
loop of the system and using the state position
and velocity feedback in the inner loop. It can be
seen from Figures 3 to 5 that, under the proposed
neural network based control scheme, the ampli-
tudes of vibrations in the macro manipulator as
well as the tip-position tracking errors of the mi-
cro manipulator rapidly converge to small regions
around the origin while the magnitudes of the ap-
plied torques are kept bounded. In particular, the
average amplitudes of the first two flexural modes
are reduced by nearly 95% over the conventional
PD joint controller. Note that there are additional
vibrations in the macro manipulator induced by
acceleration of the micro manipulator during 4.5 -
6.5 seconds. These vibrations are well suppressed
by the neural network controller, though there
remain small residual vibrations. In contrast, the
PD controller is not capable of damping out these
vibrations. Moreover, it can be observed from
Figure 6 that there are significant oscillations in
the control torques under the PD control due to
its high-gain feature. It is clearly shown from the
simulation results that use of the neural network
significantly improves the tracking performance as
the network learns more about the dynamics of
the M3 system.

5. CONCLUSIONS

In this paper, we have developed a novel control
scheme for time-varying trajectory tracking con-
trol of a macro-micro manipulator (M3) system
based on neural networks. The control scheme
allows us to constrain the tracking errors of the
micro manipulator in the presence of vibrations
due to the flexibility of the macro manipulator
links within an arbitrarily small region around
the origin by applying bounded control torques
at the joints of the M3 system. A neural net-
work is designed to perform the learning and
control tasks online simultaneously and no off-
line training procedure is required for the neural
network to identify the dynamic model of the M3

system. The stability and convergence properties
of the control scheme provide assurances of the
reliability needed to make the controller feasible
in practical real-time control. The performance
of the control scheme is tested and compared to
that of a PD controller by simulations on a three-
link rigid micro manipulator attached at the tip
of an one-link flexible manipulator. Future work



in this area will include implementation of the
neural-network based strategy to a prototype M3

system, currently under construction, consisting
of a 4 degree-of-freedom macro manipulator and
a 7 degree-of-freedom micro manipulator.
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