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Abstract: A scheduling problem in a manufacturing system that produces different
types of items is presented in this paper. The demands for the items are P oisson
processes, and simultaneous production of tw oor more items is not allowed. The
decisions on stopping the production can be made at any time, even if the item being
produced is unfinished. An instantaneous setup cost is paid when the production
is stopped or initialized, or when the production is switc hed from one item to
another. The scheduling problem is formulated as an Impulse Control of Piecewise
Deterministic Markov Processes. The value function is characterized and aproximation
methods for the solution of the scheduling problem are proposed.
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1. INTRODUCTION

This work studies a stochastic control problem in
a manufacturing system that produces different
types of items. The demands for the items arrive
during the running of production and they form
Poisson Processes. Simultaneous production of
two or more types of items is not allowed and the
type of item to be produced is choosen at the end
of the production interval of the previuous item.
During the production interval, the interruption
in favour of the production of another type of
item is not allow edhow eer, one can decide to
bring the production to a half at any time, in a

preemptive decision policy .In returning to pro-
duction, the unfinished item should be completed.
An instantaneous setup cost is paid when the
production is stopped or initialized, or when the
production is switched from one item to another.
The decision maker has to decide betw eenpro-
ducing or stopping, and when the plant is activ e,
the type of items and production scheduling, in
order to minimize the expect cost associated with
setups, production and storage/shortage of the
items.

The optimization problem is formulated as an Im-
pulse Control of Piecewise Deterministic Markov



Processes (PMDP) as presented in (Davis, 1993).
There are many interesting works dealing with
the application of PDMP in the context of pro-
duction and storage planning, e.g. see, (Akella
and Kumar, 1986), (Boukas and Haurie, 1990) or
(Jiang and Lou, 1994), where the production plan-
ning and the preventive maintenance in a flexible
manufacturing system is studied as a continuous
control problem. In (Yan and Zhang, 1997), the
production planning and setup scheduling in a
failure-prone manufacturing system is considered
as a combination of continuous and intervention
control problems. This scheduling model has some
resemblances with the model we propose; however,
the major difference is that it presents determin-
istic demand and instantaneous production. In
those works the type of preemptive policy men-
tioned is never considered, although it is of clear
interest when the production of each item is not
instantaneous, and the time elapsed has to be
taken account. Previous results on the problem
of production & storage that assembles identical
items with preemptive policy appears in (do Val
and Salles, 1999) and (Salles and do Val, 2001).

This paper is organized as follows: in section 2
the production scheduling problem is formulated
as a stochastic control problem of PMDP and in
section 3 is presented two methods of solution
for this problem. The first (see Proposition 3.2)
is adapted from the general results presented in
(Davis, 1993) for the Impulse Control of PMDP,
and the second method (see Theorem 3.1) is
derived from the results of (Salles and do Val,
2001), which explores the state space structure
of the production scheduling model. Finally, the
conclusions of this work are shown in section 4.

2. THE PRODUCTION SCHEDULING
PROBLEM

The manufacturing system presented here pro-
duces J different types of item, with the restric-
tion that only one item is produced at each time.
The demand of each type of item forms a Poisson
process with rate M/, 7 = 1,2,...J and the item
of type j requested by the demand until time ¢
is indicated by d/. Let w] the number of items of
type j produced until time ¢; thus, the number of
items of type j on storage or in backlog is indicated
by the process:

ng ::wg—d{, t>0,
where n! € Z.
The production rate of each type of item is a

constant given by v € R'; the progression on
production of each item is indicated by the process

t = & and it satisfies v = %ﬁt. The process &
assumes values on interval [0,7]; thus the pro-
duction of an item j is initialized if {& = 0 and it
is completed when & = I'V.

Let z; := (n},...,n/,&,7) the state of the pro-
duction process. When the item j is being pro-
duced, ¢ — z lies in the subset S} = Z7 x [0, I].
Let ds1 = 7”7 x{T'7} the boundary of S%. When the
production of item j is stopped and no one item
is produced, t — z lies in the subset S} = Z7 x
[0,T7]. We denote ds: = U;08}, §' = U;S}, S" =
USY and S = S"US". For any z = 29 € S, let us
define the drift function by :

p(t,z) =

(n',...,n" 6 +v-t,j), 0<t<t*(2), z€8j,
(nt,...,n7 &%), t>0, z€ S},
where
t"(z) ;= inf{t > 0: p(t,2z) € 0%} (1)

with the convention inf () = 400, where 9%, is a
subset in the active boundary 0dg:, defined by:

05 :={z€0g :t >0,z € S such that (2)
©(s,20) = z when s — t.}

Observe that t* : 95 — Ry in (1) is continuous,
and denote

Alt,z) = / Apls, 2))ds 3)

for any z € S and t < t*(2). Let u: 0% — Us =
{1,...,J}, a control in the boundary of the state
space such that, for z € 85;_, j e {1,...,J},
if u(z) = 4, for i € {1,...,J}, then we must
start the production of an item of type ¢ after
the production of an item j has been finished. The
process z; as defined belongs to the class of PDMP
(Davis, 1993) with state space S = S’ U S"”, and
is characterized by the following elements:

(i) A deterministic drift ¢ — (t,2),t >
0,¢(0,2) = z, which is bounded in S. For
each z € S" it satisfies p(¢t,2) = 2z, > 0, i.e.
0 has null velocity at S”. The deterministic
drift defines the active boundary 0%, as in
(2).

(i) A jump rate A € Cp(SUQY), where Cy(SUOY)
is the space of real continuous and bounded
functions on S U 9%;

(iii) A probability of transiction u(-,z,u) inside
the state space. In the boundary 0%, the
transiction is controled and is denoted by us.
When 2z = (n},...,n?,....,n' T j) € 0%

and u(z) = i then ps(y,z,u) = 1if y =



(n',...,n? +1,...,n7,0,i) € S!; otherwise,
if y ¢ S, then ps(y,z,u) =0.

The processes t — z; is described as follows.
Starting at zp = z let 77 be the first jump of
the process, such that

P.(Ty > t) = {0 7 t;*(z) (4)

and z; = @(t,z) for t < Ty, P.-as. Let F; =
o(zs : s < t) be the filtration of the process, and
consider }'T;. We have that:

P.(zr, € AlF ) = (A, 0(T1, 2)) Lz <t-(2)} (5)

+ 1o (A, 0(T1,2)) Lir=e=(2)}

for any Borel measurable set A € S. After the
jump time 77 the process starts afresh at zp,
following the drift ¢(¢, zp,) on the interval T} <
t < T», and similar stochastic definitions in (4)
and (5) apply to T and zr,, respectively.

Let us consider the sequences of intervention times
denoted by # = {m,m,...} € I, and 8 =
{&,&,...} € © where II and © are classes of
stopping times with respect to the filtration F;.
These classes contains respectively, the interven-
tion times associated with transitions between the
subsets S} and S} and vice versa, and the comple-
tion times of each finished item. Notice that the
intervention control m € II is associated to the
decision on stopping or starting the production,
whereas at the times 6 € © a decision u(z) € Uy,
for z € 855, is associated to the switching of the
type of item to be produced.

It is assumed that this manufacturing system is
characterized by the following costs by unit of
time: L; : Z — R*, the storage costs (n] > 0)
or the backlog costs (n? < 0) of each item j; p :
S — R, the cost associated to the production
rate of each item; h : 05 U Us — RT, that is the
setup cost associated to the choise of the type of
item to be produced; finally, g : S — Rt is the
cost associated to the stoppage or initialization of
the production of each item.

Let us define the functions L = }°;L;, and
f(z) = L(z) + p(z) and denote the descont rate
by the constant a. Assume that f(z),h(z) and
g(z) belong to the class of continuous function
Cy(S U Os). For any control policies 7 € II and
u € Up, let us associate the following cost

VTU(z) = E;T"{/O e ¥ f(zs)ds

+ Z eiaTih‘(zﬂ')v U(Zei))l{%__ €041}

+3 (2, )} 6)

where above expectation is get with respect to the
process t — z; with zp = z. In this scheduling
problem, one has to determine a sequence of
setups in order to minimize the operational cost
given in (6). When it exists, such strategy is
optimal and furnishes the value for the problem,
V:SU0% — R, defined by:

= inf
V(Z) ﬂEHl,nuEUg

VTH(z) (7)

3. SOLUTIONS FOR THE PRODUCTION
SCHEDULING PROBLEM

The solution of problem (7) is obtained from
sucessive aproximation methods similar to that
present in (Bertsekas and Shereve, 1978). A dy-
namic programming operator, denoted “the one-
jump-or-one-intervention operator”, with control
on the boundary, generate a sequence of functions
that converge to the value function of the schedul-
ing problem. This section presents two approxi-
mation squemes which differ in the way that the
end cost of the one-jump-or-intervention operator
is updated at each iteration. One method has a
simple convergence and it requires a restriction
in the initial function of the procedure, whereas
the other presents an uniform convergence and is
initialized by any continuous function.

3.1 The one Jump-or-Intervention Operator

For a point z € S'(€ S"), let us denote the
correspondent point in the copy S”(S’) by z.
Similar notation applies for the process t — z,
and we inidicate by Z; the correspondent point
in S’ or S” to which the process is transferred
whenever an intervention occurs at time £.

Let us denote aAb for min{a, b} and A := a+A(z).
For z € S and any ¢, ¢ € Cp(SUY), let us define
the following operators:

M[d](z) := ¢(2) + h(z,u(z))l{zeag}

Rilé,0](2) i= inf E”“{/MTI e £ (20)ds

ueUp
+e” ”‘TlM[ Ol (21 ) Lge>1y
° ((20)) + 9(20)) L pe<ryy },
(®)



Rl¢,¥](2) :=0<tlgtf* Rilo, ¥](2) (9)
)= [ owutay.2) (10)

QO = | owmatdy, =), (1)
91(2) =ﬁ<f(z) FAEQs(2), (12)

Remark 1. The operador (9), denoted the “one-
jump-or-Intervention operator,” characterizes an
stopping time problem with end costs M][¢] or
1) + g, depending on the stopping time be the first
jump or the first intervention, respectively.

We assume that:

(Hy) g(z) > go > 0 for go € RT.
H) ¢,¢ and h are in Cp(S).

The assumptions (H;) and (Hs) guarantee that
there only exists isolated interventions epochs in
any candidate to optimal policy in the scheduling
problem (7). The details to comply with standard
conditions as in (Davis, 1993) are presented in
appendix A of (Salles and do Val, 2001).

The value function for the one-jump-or-intervention
problem, v : SUAS — R, is defined by:

v(z) = R[9, ¥](2) (13)

Let us denote:
At 2) ;:/0 (a+)\(<p(s,z)))ds:/0 No(s,2)) ds

Lemma 2. If H, holds and ¢,v € Cp(SUOY), then
v e Cy(SUOY).

Proof: Let us define the following operator:

tATy
R/19.0)(2) = inf BT /0 ™% f(z,)ds

e Mgz Lyspy + e (Y(2)) + g(Zt))l{t<T1}}v

thus

Reld, ¥](2) = Ri[o, ¥](2) + (14)
illltf E;T”‘{e_o‘Tlh(ZT1 , U(ZTl)l{le 68;,}}

In view of the first jump time T has the exponen-
tial distribution given by (4), we have that:

infE”7“{e“’T1{h(zn,U(ZTl)l{leea;,}}
—lnf{e 2D R(p(t, 2), ulp(t", 2))) }(15)

Since t*(z) € Cp(S U 0*S’) we conclude that the
above expression is in Cp(S U 0%). In addition

R'¢,¢](2) € Cp(S U 0%) from Lemma(53.38), p
224 in (Davis, 1993). Therefore, from (14), we
conclude that R[¢,¢](z) € Cp(S U ). O

Let B denote the vector field associated to the
deterministic drift . For ¢ € C(S U 9%), and for
points where ¢(z) is differentiable, we denote

Bl](z) = lim t ' [d(ep(t, 2))) —

t—0

¢(2)]-
Smoothness of the vector field B is required, as in
(Gatarek, 1992):

(Hs) There exists a = (a1---aq) with a; €
Cy(S),j=1,...,d such that Bl¢](z) =
a(z),V¢(z) >, for any ¢ € Cp(S) which is
differentiable at z € S.

Lemma 8. Assume that H, is valid. Then v in
(13) is a viscosity solution of the following varia-
tional equations

{BIV](2) = X(2)v(2) + \(2)Qs[8](2) + f(2) }A
{¥(2) +9(z) —v(z)} =0, z€¥, (16)
v(z) = {(2) + 9(2)} AN[¢(2), z€S" (17)
with the boundary condition for z € 0%:
v(z) = inf {Q5[¢](2) + h(z, )} A (1(2) +9(2)),
(18)
Conversely, if v satisfies (16)—(18) for each z € S,
then v(z) = R[p, ¢](z).

Proof: From the arguments in Lemma 6 of (Salles
and do Val, 2001), we conclude that

tATy
Rl () = v(z) =inf B2 [ e e ds
+e T (M[P](2(T0)) 1r, <y
e (2 + 9z )z 0 )
_ /Ot e*X(S7z)Q((’p(s,z)) ds

+ e MEA (T (p(t,
+inf Iy (p(t,

Z)){t<t*(z)}
Z)){t:t*(z)}

(19)
where, we set

( ) i= £(2) + M(2)Qs[8](2) — M2)w(2)
Blv](z) forze S
<z> i=P(z) —v(z), forzeS
T4(2) := Q4M@]|(2) — v(z) = Qu[8](2) + h(z, u)
—v(z),for z € 0%.
(19)



By optimality, Q(z) > 0, I'1(2) > 0, I'a(z) > 0,
and the minimum is achieved if and only if in (19)
Qp(s,2)) =0,0< s <tand 'y (p(t,2)) =0, t <
t*(z), inf, % (p(t,2)) =0, t = t*(z). Therefore,
t = arg min{R,[¢,¥](z) : 0 < s < t*(2)}, and
71 = t is an optimal stopping time, respectively.
It follows from the above that Vz € 9%,

Q2z)AT1(2) =0,Vz € S and I'1(2) Ainf '3 (2),
(20)
holds, expressed for z € S’ by (16) with the

boundary condition (18). For z € S” notice
that Blv] = 0, and from (12), Q(z) = f(z) +

A(2)Qs[0](2) — A(2)v(2) = A(2)(N¢](2) — v(2)).
Writing (20) in this situation we get (17) equiva-

lently.

Finally, we verify that v is indeed a viscosity
solution by following identical steps to those in
the proof of Proposition 5 of (Gatarek, 1992). O

3.2 The First Aprozimation Method

For ¢ € Cy(S) let us define the following operator:
L[¢](z) := R[9,¢](2), (21)

Let us define the sequence of functions V;,i =
0,1,2,..., by:

Vi(z) :== L]Vi1](z), VzeS (22)
Definition 3.1. Let the sequence of jump times
Y = {T;:i = 0,1,...} and the sequence of
intervention times II = {r; : i« = 0,1,...}. Let
the sequence of intervention or jump times Y =
{si:1=0,1,...}, defined by:

G :=0, G = min{t >Gi—1 1 2t 7é Zr}a

where (24— := limgqs 25).
These sequences are {F;}-stopping times, and in
view of assumptions H; e Hs we guarantee that

T7; = 00 P,-q.c. and T; — oo P.-q.c., when ¢ — 00;
thus ¢; = 0o P,-q.c.

Lemma 4. Foreach z € Sandi=0,1,...

Si
Vi(z) = inf E”{/ e f(z,) dt
0

nell,ueUy

i
+ Z e_aTjg(ZTj)l{Tj<Ti}+
o (23)

Z e h(z§j)) U(ZCJ' ))l{z;j €0g1}
j=1

e V(z) b,

Proof: Using in (8) the fact that ¢¢ = 7 A T} for
71 € [0,00], we obtain from (3.1) the following
representation:

S1
Rl v](2) o= int B2{ [ e fanyas
u 0
+ e h [d)(le) + h(le ) U(ZTI))]‘{ZTl E@;,}]l{ﬁ >T1}

+e " (Y(z) + g(zt))l{ﬁ@}}-
(24)

By definition, V; = L[V;] = inf,, R, [V, Vo](2)-
Thus from (24) we show this result for ¢ = 1.
Suppose that (23) is satisfied fori > 1. Since
{zx : t > 0} is a Strong Markov process, we
conclude the following result from the dynamic
programming arguments:

Vir1(2) = L[Vi](z) = inf R+, [Vi, Vi](2) =

T1,U

<1
inf E’”‘{/ e” " f(zs)ds +e " g(2r, ) 1ir, <1y}
0
e (zg), w2 ) ey e,y + e Vilz) }
S1
= inf E”{/ e” Y f(zs)ds + e " g(2r ) 1ir, <1y}
0

T1,U

+e h(zm)) U(Z<1 ))l{zCl €0gr}

Sit+1
+e *tinf E””{/ e *f(zs)ds

™ S1
i+1
+ 3 €T (2 L Ty
j=2
i+1
+ Z e [h/(ZCj)7 U(ZCJ'))I{ch S V()(Z“"'l)”fgl }}
j=2

Sit+1
= inf E’”‘{/ e " f(zs)ds
U 0

i+1
+ Z e g(zr) ) r <Tipa}
j=1
i+1
n Z e~ 0S [h(Zg]-), U/(Zgj))l{zgj €041} + V()(Z§i+1)]}a
j=1

showing the expression (23) for i + 1. i

Proposition 5. Assume that H; and H> hold.
Then V is the biggest Borel measurable solution

of the system:
w = Llw]
w S h/U/
for u € Ug with I : SUAS — R given by

I(z) := E:{/OOO e *f(zs)ds

e bz W) ey oy ) (29)

i=1



Moreover, for a function Vy > I, the sequence
Vii=1,2,... defined by (22) is such that V; | V
as ¢ — 00.

Proof: From theorem 54.23 in (Davis, 1993),
Vi(z) = L[Vici](z), i = 1,2,... for all z € S is
a monotone decreasing sequence that converges
to a continuous function w such that w = Llw].
In view of ¢; — oo when i — 0o, we conclude from
Lemma 4 that V; — V and therefore V =w. 0O

3.3 The Second Aprozimation Method

For ¢ € Cy(S U 0%) let us consider the following
operator:

Plo(z) ==

{R[¢,N[¢11<z), for z € §'
(Rl$, NglI(2) + 9(2)) AN[B](2), for = € S".
(26)

Theorem 3.1. Suppose that H;—Hjs hold, then for
any Wy € Cp(S U 0%), each function Wy, =
1,2, ... defined by:

Wi(z) := P[W;1](z), VzeS, (27)

is a viscosity solution of the variational inequali-
ties:

{BIWil(2) = A(2)Wi(2) + \(2)Qs[Wi1](2) + £(2)}
NNWiZ1](2) + g(z) = Wi(2)} =0 for z € S,

(28)
Vze S",
(29)

Wi(z) = [Wi(2) + g(2)] AN [Wi1](2),

with the boundary condition for z € 9%, :
Wilz) = inf {QUIW; 1](2) + h(z,u)}
ANW;_1](2) (30)

In addition, W; — V uniformly, as i — oo.

Proof: From Lemma 3 and the arguments pre-
sented in the proof of Theorems 3 and 4 in (Salles
and do Val, 2001).

4. CONCLUSIONS

A production scheduling problem in a stochas-
tic manufacturing system that produces different
items has been formulated as an Impulse Control
of Piecewise Deterministic Markov Processes. The
production scheduling determines a sequence of

setups in the middle of the production interval,
that represent the decisions on starting or stop-
ping the production of an item, and a sequence
of setups in the boundary of the state pace, that
represent the decision on switching the production
from one item to another. Two sucessive aproxi-
mation methods that furnishe the solution of the
scheduling problem have been obtained: the first
requires a restriction in the initial function of
the procedure, and the second presents an unifom
convergence and is initialized by any continuous
function. The last procedure explores the fact that
the state space of the production process has gen-
eral drift in one copy of the space state, and in the
other copy the deterministic drift is null. At the
moment, these methods are being implemented,
and numerical results will be presented at the
conference.
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