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Abstract:   This paper presents an input shaping method for building in real time a shaped 
velocity profile according to an integer algorithm that determines the command reference 
signal at each interpolation step. This integer implementation has the drawback of slightly 
reduce  shaping robustness. However, experimental results confirm residual vibration 
reduction when robust shapers are used in the integer input shaping process. Copyright © 
2002 IFAC. 
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1. INTRODUCTION 
 

 
Given the increasing use of low-cost controllers to 
drive mechanical systems in positioning applications 
and the trend toward faster, lighter, and more flexible 
structures, control system design and its 
implementation with such controllers machines  is an 
important topic. Some modern digital servo systems 
have the structure shown in Fig. 1. They control a 
motor using an encoder. They consist of an encoder 
counter, a microcontroller, some form of  D/A 
(Digital-to-Analog) converter, and a power amplifier 
that delivers current or voltage to the motor. Note 
that D/A conversion is usually accomplished with a 
PWM output. For most mechanical systems a 15 
KHz or higher PWM frequency is necessary so to 
that the modulated signal U(t) effectively produces 
the desired control effort. 

Fig.1. Servo system for motion control. 

 
The command generator is  essential for good motion 
control. A linear piecewise velocity profile is 
implemented in many of the command generators for 
position control applications. The velocity profile is 
trapezoidal when the velocity limit is reached before 
the midpoint of the motion and triangular for a short 
move where the velocity limit is not reached. 
 
Input shaping is a technique used in the command 
generator to reduce residual vibration in mechanical 
systems with some degree of flexibility. The system 
parameters (frequency and damping) are used to 
design the input shaper, which is an impulse 
sequence whose amplitudes and time location are 
functions of those parameters. This sequence is 
convolved with the input and the convolution result 
is the new shaped input to the system. If the 
parameters used to design the shaper are accurately 
known, all or most of the residual vibration would 
disappear after the time of the last impulse. 
 
A great variety of input shapers has been developed 
for various types of  applications. For example, input 
shapers have shown benefits for coordinate 
measuring machines (Singhose et alt,1996) (Jones 
and Ulsoy,1999), silicon handling machines 
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(deRoover and Sperling, 1997), and cranes 
(Feddema, 1993) (Lewis et alt 1998) (Singer, 
Singhose, and Kriikku, 1997). One characteristic that 
distinguishes each input shaper is its robustness to 
modeling errors. To evaluate  robustness, the residual 
vibration amplitude is plotted as a function of a 
modeling error to produce a sensitivity curve. If the 
vibration increases rapidily with increasing error, 
then it is not robust. The first input shapers 
developed in the 1950’s suffered from this problem 
(Tallman and Smith, 1958). These early shapers were 
designed by requiring  zero vibration when the model 
was perfect, but did not have any requirements to 
suppress vibration when there were errors in the 
model. 
 
The zero vibration and derivative (ZVD) shaper was 
the first input shaper designed  to be robust to 
modeling errors (Singer & Seering 1990). It produces 
zero vibration when the actual system frequency, ωa, 
perfectly matches the modeling frequency, ωm. 
Furthermore, the derivative of its sensitivity curve is 
zero at the modeling frequency. This property of the 
derivative tends to keep the vibration at a low level, 
even when there are modeling errors.  
 
Fig. 2 shows a shaped velocity profile for real time 
motion control. It is the result of convolving  the 
trapezoidal velocity profile described above and a 
ZVD input shaper. The slope for the convolved 
profile changes during phases 1 and 2 varying from 
A1· A to A, where A1,A2 and A3 are the ZVD-
shaper‘s impluses amplitudes whose values and 
application times (ts2,ts3) are given in (Singer & 
Seering 1990). The main goal of this paper is to 
implement input shaped velocity and position 
profiles on an integer machine for motion control of  
mechanical systems with some degree of flexibility. 

 
Fig.2. Input shaping a trapezoidal velocity profile. 
 

2. IMPLEMENTING SHAPED CONTROL 
COMMANDS ON AN INTEGER MACHINE. 

 
As stated in the introduction the driving function is  
the PWM output given by the microcontroller. Up to 
10 bits of PWM resolution is available in most 
popular microcontrollers, but PWM-frequency and 
resolution are not independent and must be traded off 
against each other. As frequency is increased PWM 
resolution decreases, these are related by: 
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Where: 
FOSC = Clock  frequency (4 MHz – 20 MHz). 
FPWM = PWM frequency. 
From (1),  8 bit resolution with a 4MHz clock is 
attained for a PWM frequency of around 15 KHz and 
10 bits resolution can be achieved with a 20 MHz 
clock. In addition, a temporized interrupt routine of 
around one millisecond is necessary to apply impulse 
amplitudes at the correct times for the shaping 
process and good motion control.  This implies that 
the modulating E(t) signal can reach up to 1 KHz, so 
the PWM frequency should not be lower than 15 
KHz.  
 
Further development is facilitated if first we restrict  
the velocity shaped values to increments of the PWM 
register. To that end, let G be the gain to translate 
instantaneous velocity values  
 

)k(A)1k(V)k(V +−=    (2) 
 
to the corresponding PWM values. 
 

)k(AG)1k(PWM)k(PWM ⋅+−=   (3) 
 
Where: 

V(k): Velocity value at k millisecond. 
PWM(k): PWM register value at k millisecond. 
A(k): acceleration value at k millisecond. 
G: Max PWM value (255) / Max integer velocity  
value (65535). 

 
This gain G can be easily determined from the 
maximum value of the PWM signal and maximum 
value of velocity. Both are integers and equal 
respectively to 255(28) and 65535(216)  for the best 
resolution due to integer machine constraints as 
stated above. Note that a unit increment in the PWM 
value take place at different update time according to 
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Where: 
Update_time: time between PWM unit 
increments.   

 A(k): Acceleration at k millisecond. 
 A : Nominal acceleration. 
 Ai: Amplitude of  «i» shaper impulse being i < k. 
 
Table 1 shows those time values during the 
acceleration phase for a ZVD shaped velocity profile. 
The integer discretization process just described 
above was compared by simulation with a floating 
point algorithm. Simulations were performed on a 
mechanical system with low damping d=0.002 and 
natural frequency ωn=3.1416 [rad· s-1]. 
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Table 1. PWM-Increment  time  values for a ZVD shaped profile 
 
Acceleration Value Time interval Update Time 

 (ms) 
PWM  
Incre. 

A1· A 0<t≤ts2 1/G· A1· A 1 
(A1+A2=A12) A12 · A ts2<t≤ts3 1/G· A12· A 1 
(A1+A2+A3=A123)A123·
A 

ts3<t≤tt2 1/G· A123· A 1 

(A2+A3=A23) A23· A  tt2<t≤tt2+ts2 1/G· A23· A 1 
A3· A tt2+ts2<t≤tt2+ts3 1/G· A123· A 1 
0 tt2+ts3<t≤tt3 1 0 

Figs. 3 & 4 show residual vibration results for 
unshaped, ZVD-shaped and ZVD-shaped integer 
algorithm, velocity profiles. If no modeling errors are 
assured, it was found that, about 97% of residual 
vibration reduction can be achieved with  the integer 
algorithm. Note that the shaping increases the rise 
time of the system, but greatly reduces settling time. 
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Fig.3. Response to Unshaped, ZVD-integer, and 
ZVD-float  inputs. 
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Fig.4. Zoom in on residual vibration from figure 3. 
 
At this point it is necessary to remark that the PWM-
output update times given by table 1 must been 
rounded to the closest  millisecond integer value for 
a standard motion control implementation based on 
one millisecond temporized interrupt. This rounding 
process implies a resolution loss that can be 
estimated by recalculating new acceleration values 
from the rounded update times according to: 
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Those slightly modified acceleration values A’(k), 
implies new amplitudes Ai’ for the actual input 

shaper implemented that differs from the theoretical 
values. Fig. 5 shows that those amplitude changes do 
not cause a significant loss of shaper robustness.  To  
 demonstrate this effect the amplitude of residual 
vibration has been plotted as a function of modeled 
frequency error. Robustness is usually measured as 
the width of the curve under some vibration 
percentage. This non-dimensional parameter I is 
called the shaper’s insensitivity. The results in Fig.5 
are only for the set of operating parameters. Other 
values may lead to lose of robustness when using the 
integer approximation. To overcome such possible 
robustness loss some robust shapers are available that 
in spite of resolution constraints due to integer 
algorithm approximation can accomplish large 
insensitivity specifications. 
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Specified Insensitive shapers (SI-shaper) can be 
generated by using a frequency sampling method 
which consist of repeated use of the expression for 
residual vibration, in each case the residual vibration 
is set less or equal to a tolerable level of vibration, 
Vtol (Singer and Seering, 1992) (Singhose et alt, 
1996): 

( )( ) ( )( )22t
tol ,S,CeV n δω+δω≥ δω−   (6) 

 
where C and S are functions of impulses amplitudes, 
frequency and mechanical system damping. In the 
following an SI shaper is designed using frequency 
sampling method with Vtol= 5% and I=0.7. The set 
of equations that must be satisfied are six versions of 
(6) at some specified frequencies (see Fig.6). In 
addition, the impulse amplitudes must sum to one, 
and have positive values.  Solving such a system of 
non-linear equations with constraints designed for 
0.5 Hz modeled frequency and damping d=0.002. 
The SI shaper is given by: 
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again due to integer implementation according to (5), 
the SI shaper’s amplitudes are slightly modified : 
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The main effect of such differences between 
theoretical and actual amplitudes is the Shaper’s 
robustness loss as shown in Fig. 6. 
In position control mode this analysis remains valid. 
In this case, the area under the velocity shaped 
profile curve corresponds to machine position so the 
command generator approximates the area by 
performing some kind of numerical integration, 
Euler’s or Tustin methods are available. 
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Fig.6. SI-Shaper robustness loss. 
 
In the following analysis the command reference 
position signal is formulated based on the forward 
Euler approximation. From Fig. 7, the instantaneous 
position value P(k) at «k» step  can be calculated  
using a recursive law adding the incremental 
rectangle area S(k)  to the previous position value 
P(k-1) as shows table 2. 
 

Table 2. PWM-Values at interpolating  times. 
 
Interval Position Value 
0 ≤ k < ts2 P(k) = P(k-1)+(k-1)*A1 
ts2 ≤ k < ts3 P(k)=P(k-1)+[(ts2-1)*A1+(k-ts2)*A12] 
ts3 ≤ k < tt2 P(k)=P(k-1)+[(ts2-1)*A1+(ts3-ts2)*A12+(k-

ts3)*A123] 
tt2 ≤ k < 
tt2+ts2 

P(k)=P(k-1)+[(ts2-1)*A1+(ts3-ts2)*A12+(tt2-
ts3)*A123+(k-tt2)*A23] 

tt2+ts2≤k< 
tt2+ts3 

P(k)=P(k-1)+[(ts2-1)*A1+(ts3-ts2)*A12+(tt2-
ts3)*A123+ts2*A23+(k-tt2+ts2)*A3] 

tt2+ts3 ≤ k < 
tt3 

P(k)=P(k-1)+[(ts2-1)*A1+(ts3-ts2)*A12+(tt2-
ts3)*A123+ts2*A23+ts3*A3] 

 
In addition, the difference between P(k) and Y(k) the 
actual position given by position sensor, see Fig. 1, is 
fed into the PWM register.This difference value S(k) 
is modified to account for the one step delay in the 
Y(k) signal caused by the control loop. When 
translating the instantaneous S(k) value to the 
corresponding PWM value, once again, resolution 
constraints due to integer approximation arise. Let 
«G» be the necessary gain for such conversion, that 
can be estimated from the maximum PWM register 
value and the maximum incremental rectangle area 
Smax. These are respectively 255 and: 
 

3A*3ts23A*2ts123A*)3ts2tt(
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then 

maxS
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and finally 
 

))k(S·G(Round)k(PWM =  (11) 
 

Fig. 7. Numerical integration, forward Euler method. 
 
The effect of numerical approximation, and the 
PWM resolution constraint just described above was 
analysed by simulation and compared with an 
unshaped algorithm. Simulations were performed 
with the following conditions:  mechanical system 
damping d=0.002, natural frequency ωn=3.1 [rad· s-1], 
no modeling errors, maximum incremental area 
Smax value 31492, and maximum PWM value 255.  
Transient deflection and residual vibration reduction 
with SI-shaper integer approximation was quite 
effective. 
 
3. DYNAMIC AND EXPERIMENTAL ANALYSIS 
ON A FLEXIBLE SINGLE INTEGER MACHINE. 
 
Universal joints used in vehicles to transmit power 
between two shafts that are not collinear need 
tempering. Some simple machines called picking 
storage carrousels are used in automated motion 
sequences needed to feed joints, place them in the 
working area of a machine tool with a special 

Fig.8. Dynamic model. 
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tempering headstock and retire the tempered joints. 
Due to process characteristics, harsh environment 
conditions are close to the tempering zone so the 
carrousel shaft and motor must be far from that zone, 
this implies quite large and flexible arms. A dynamic 
model for this flexible machine, whose control 
system is based in a low-cost integer controller, 
consists of two masses connected by a spring as 
shown in Fig 9. 

 
Fig. 9. Benchmark mechanical system. 
 
Applying Newton’s second law to this system, we 
obtain 
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Where x1 and x3 represent the two angles shown in 
Fig. 8. The associated eigenvalue problem has the 
form ½l I - A ½= 0. The solution of this polynomial 
equation using symbolic computation gives: 
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When the mechanical system shown in Fig. 9 is 
examined, it is found that, since the masses at each 
end are not restrained, two rigid-body modes in 
which both masses move in the same direction by the 
same amount is possible. The spring is neither 
stretched nor compressed in those cases. This motion 
is associated with the zero eigenvalues λ1, λ2 and 
also it is the desirable rigid mode for the motion for 
the flexible loader system represented in Fig. 8. Thus 
the frequency of second vibration mode can be 

evaluated applying to eigenvalues λ3, λ4 the 
equivalent rotary parameters. 
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Note that spring parameter value «K» can be easily 
estimated from the equivalence of a mass spring 
system and a balanced beam fixed at is end with the 
same natural frequency. 
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By substituting this last equation into (19)   we get 
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Where:  
E =Young module. 
I= Cross section moment inertia of the uniform arm.  
L= Length of  the arm. 
M2=Mass at the end. 
J= Moment of inertia of the shaft. 
 
An integer command generator for the mechanical 
system just analysed above was implemented on a 
PIC16F877 microcontroller. An OMRON absolute 
encoder EGCP-AG5C-C (resolution 256/360º) was 
couple to the carrousel shaft with a toroidal joint.  
Also a board was built to convert  the gray code 
given by the encoder into an analog signal. This 
sensor was interfaced with our computer, which 
allow us to write our own  virtual instrument to 
analyse the flexible loader residual vibration. In the 
first test the mechanical system was moved by the 
PWM output that feeds a SIEMENS 
MICROMASTER driver for a standard trapezoidal 
velocity profile. The size of acceleration and 
deceleration phases is 3000 ms and the velocity limit 
is also maintained for the same time length. Residual 
vibration at the end of the move was measured with 
our data acquisition system. Fig. 10 shows the sensor 
signal in the time domain and Fig. 11 in frequency 
domain. 

Fig.10.Response of the flexible loader to the 
unshaped input 
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Thus from those representations, the measured 
fundamental frequency  of vibration is 0.5 Hz and 
damping seems to be approximately 0.002. To 
reduce residual vibration input shaping was  used in 
the integer command generator  of  this flexible 
loader. 

Fig. 11. Frequency components of residual vibration. 
 
The SI-input shaper designed in section 2  for the 
same mechanical system parameters was 
implemented by computing the times at which the 
PWM register must be incremented or decremented 
according to table 2. Fig. 12 shows the experimental 
SI-shaped  velocity  profile generated by the PWM 
output-port of  the PIC. 

Fig. 12.- Experimental SI-Shaped velocity profile. 
 
The residual vibration of the mechanical system is 
reduced when the move is generated with this shaped 
velocity profile as shown in Fig.13. This 
demonstrates that our implementation of  input 
shaping in a single flexible integer machine can 
achieve very low  residual vibration. As a check the 
discrete time Fourier transform of  this signal is quite 
similar to the Fourier transform of a square  signal 
that correspond to the fast change of encoder value 
between 255 and 0 as the loader rotates. As shown in  
Fig. 14  the amplitude of frequency component   

Fig. 13.Residual vibration reduction. 
corresponding to the flexible loader mechanical 
vibration at 0.5 Hz is reduced greatly.  

 
 
Fig.14. Frequency components of flexible loader 
sensor  signal  for SI-shaped input. 
 

4. CONCLUSIONS 
 
An integer implementation of  input shaping  has 
been proposed. The method is based on building in 
real time a shaped velocity profile according to an 
integer algorithm that determines at each 
interpolation step the PWM value.  The integer 
approximation reduces the shaper robustness to some 
degree. However, experimental results confirm 
significant residual vibration reduction. 
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