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Abstract: A criterion to verify experimentally the stability of a nonlinear system, captured

in a feedback loop, is proposed. The basic idea is to split the output power in coherent

(linearly related to the input) and noncoherent power (the remaining power). A nonlinear

power gain, measuring the sensitivity of the noncoherent power to input variations, is

introduced. Using the small gain theorem, it is possible to check the local stability of the

feedback for the actual class of excitation signals. 
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1. INTRODUCTION.

Consider a nonlinear system captured in a linear
feedback loop (see Fig. 1.) that is designed using
linear techniques. Using the methods presented in

Pintelon and Schoukens (2001) and Schoukens et al.
(2001), the level of the nonlinearities at the output of
the closed loop system is verified for a given input
level, and the results are shown in Fig. 2. From this
experiment it turns out that the inband nonlinearity is
more than 20 to 40 dB below the linear output
contributions. The Nyquist plot of the linearized

system (Fig. 3) shows a stable loop, so that the user is
inclined to believe that she/he is on the safe side, no
unstable operation is to be expected. However, it turns
out that even very small disturbances create a jump in
the output, so that the system is locally unstable. This
observation brings us to the major question that we
want to answer in this paper. Is it possible to verify
the stability of a nonlinear system captured in a linear
feedback loop, on the basis of a simple experiment?
The alternative would be to consider the full nonlinear
nature of the system and apply specific analysis and
design methods, like Lyapunov based methods. This
requires an (expensive) identification of a full blown,

This work was supported by the FWO-Vlaanderen, the
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agreement 99/18), and the Belgian government (IUAP-5).

Fig. 1.: A nonlinear system captured in a linear
feedback loop.
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 Fig. 2.: Measurement of the level of nonlinearity at
the output of the closed loop system.



       
validated nonlinear model. The linearized approach
not only avoids this step, it also allows to use the
intuitively appealing linear control theory. Of course
the question raises if this simplification of reality is
allowed, and as observed in the previous example,
‘small’ nonlinear distortions can push the system
towards an unstable behaviour, even if the linear
analysis predicts the system to be stable.

2. LINEAR REPRESENTATION OF THE 
NONLINEAR SYSTEM

Consider the single-input, single-output discrete time
nonlinear dynamic system

, (1)

with,  the backwards shift operator, and
 a nonlinear operator acting on . For

simplicity we assume that no disturbing noise is
present (no process noise nor observation noise), so
that we can focus completely on the nonlinear effects.
In Section 6 we show how the proposed procedure
can be generalized to include also process noise. The
feedback  is assumed to be known. For simplicity
we restrict it here, without any loss of generality, to be
a constant. To simplify the simulations, we also
assume that the direct term of  equals
zero, so that  depends only upon the past values

, . The system in (1) can always be
replaced by a linear model plus an error term that
takes care for all unmodelled effects. 

(2)

Using the knowledge of the controller, eq. (2) can be
turned into an explicit feedback representation, as
given in Fig. 4 where  and  are defined from

 and  in (3):

, and . (3)

Note that  is a function of , the error signal in
the loop, where , is independent of

the particular choice of . On the other hand, 
strongly depends on this choice.

3. STUDY OF THE BIBO STABILITY

Using classical transformation rules, the system in
Fig. 4 becomes:

(4)

leading to the system in Fig. 5, with  the
nonlinear function that describes the relation between
the error signal  and the unmodelled output
contributions. Assuming that  is

stable, the overall system will be stable if also the
nonlinear feedback system in Fig. 5 is stable. This can
be checked with the small gain theorem (Khalil,
1996). 

Definition 1:  is the nonlinear gain

(5)

where  is the considered class of excitation signals.

For example  is the set of normally distributed
excitations, clipped at the level, with a specified
power spectrum.
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 Fig. 3.: Nyquist plot of the linearized system.
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loop for a given linear model.

C

G q( )+u t( ) y t( )
e t( ) +

+

-

v e t( )( )

G q( ) v t( )

e t( ) u t( )
1 CG q( )+
------------------------- Cv e t( )( )

1 CG q( )+
-------------------------–=

ue t( ) Cvy e t( )( )–=

vy e t( )( )

e t( )

C

+u t( ) vy t( )e t( )
+

-
ue t( )1

1 CG q( )+
------------------------- NL

 Fig. 5.: Feedback representation of the nonlinear
loop for a given linear model .G q( )

1 1 CG q( )+( )⁄

GNL

GNL

vy t( )
2

e t( ) 2
------------------

u Su∈
max=

Su

Su
3σ



           
If , the small gain theorem guarantees that

(6)

As a consequence, the overall system remains stable
and the following theorem follows immediately.

Theorem 1: If ,  is stable, and
, then the output  is bounded by

, (7)

with  a positive, finite constant.

The previous result can be generalized without any
problem for small perturbations around a given set of
excitations. Consider the nonlinear closed loop,
excited with an excitation . Will the system
remain stable for small distortions  around
this signal? Using a similar approach as in the first
part of this section, the following result is found
immediately.

Consider the closed loop nonlinear system in Fig. 1
with a stable operation for , excited with

, resulting in an output  and
an output error . Consider also the same linear
model  to describe the system for , and

. Define

, (8)

Theorem 2: If , ,  is
stable,  and , the output 
is bounded by

, (9)

with  a positive, finite constant.

While Theorem 1 guarantees that a bounded input
results in a bounded output, it does not bound the
variation of the output for small input variations.
Theorem 2 should be met in order to get that result.

4. EXPERIMENTAL STABILITY VERIFICATION

4.1 Method

Using the previous results it is possible to verify
experimentally the stability of the closed loop system.
In a first experiment, a linear approximation 

starting from the input  and the output 
using one of the identification procedures (Ljung,
1999; Pintelon and Schoukens, 2001). Next a second
experiment is made, applying the excitation

, and
 is obtained. Eventually,

the nonlinear gain is estimated by:

. (10)

with , .

Form the first experiment, also  can be estimated

. (11)

4.2 Discussion

1) Remark that the identification step in this
procedure is not critical. Firstly, it can be noted that
this is an open loop identification. Under these
conditions it is much easier to get a good estimate
than under closed loop conditions. Secondly, the
reader should be aware that even in the case of a ‘non-
optimal’ linear approximation, the method still works.
The only price that will be paid is that a smaller
fraction of the output power will be explained by the
linear model, and more power will be shifted to the
unmodelled output . Since the stability of this
fraction of the output is checked using the small gain
criterion that can be too conservative, the conclusions
may be also too conservative.

2) A second critical issue is the fact that the ‘max’
operator in (5) and (8) is replaced by a measured
value. In pathological cases, this can lead to
completely wrong conditions. However, in general, it
will be very unlikely that the system is potentially
unstable if the gain factor  is much smaller
than 1, compared to the uncertainty on the estimate.
Moreover, a ‘full nonlinear model based’ approach
suffers from exactly the same problem. In order to
make a firm statement, it is necessary to have ‘hard
error bounds’ on the model, which is impossible to
obtain from experiments only. And even if the bounds
are available, it will be very hard to maximize (8) over
all possible excitations.

3) It should be noticed that (10) is a stochastic
variable. In the absence of process noise and
measurement noise, its variability is completely due
to the variability of the reference signal . 

5. SIMULATION 

We illustrate the method on two examples. In the first
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example, a stable and unstable nonlinear feedback
system is considered. In the second example, the
method is applied to the system used in the
introduction of this paper.

5.1 Example 1

In the simulation, a Wiener system is used because it
allows to verify the stability of the closed loop system
using the circle criterion (Zames, 1966; Khalil, 1996).
A Wiener system consists of the cascade of a linear
dynamic part ( ) and a static
nonlinear part ( ):

The linear system is given by:

, . (12)

The nonlinear system is defined as:

; (13)

, (14)

with  s.t. the characteristic is continuous in
 ( );

. (15)

The sector gain of  is set by the value of . If
it is small enough, the circle criterion guarantees
stability (bounded input, bounded output). If it is too
large, the system can become unstable. Both
situations are considered in the simulation. The
characteristics of the linear system are given in Fig.
6., the nonlinear characteristic is given in Fig. 7..

The simulation consists of two parts. In the first one,
the maximum gain of the nonlinearity is set such that
the circle criterion guarantees stability: .
In the second one, the maximum gain of the
nonlinearity is set such that the circle criterion is
violated: , and the system can become
unstable. For both situations the nonlinear power gain

was measured. The system is excited with a filtered
white noise sequence (2nd order Butterworth filter,
cut off frequency of 0.05 Hz., Hz). In each
experiment a record length of 8096 points is used.
The excitation signal is clipped at the 3 sigma level, to
avoid extremely large spikes. The closed loop linear
approximation is obtained using an output error
method. The distortion signal  is generated as
filtered white noise (2nd order Butterworth filter, cut
off frequency of 0.25 Hz) with a standard deviation

. The effective value of the input
( ) is varied, and for each value the corresponding
squared nonlinear gain  is measured. This
process is repeated 1000 times. The results for both
simulations are given in Fig. 8. and Fig. 10 

Instead of plotting the 1000 measurements of the
nonlinear gain for each input amplitude, the 1%, 5%,
50%, 95% and 99% percentiles are drawn. For the
higher amplitudes, the system became unstable and
no nonlinear gain could be determined. This is shown
on the figure by plotting the probability of such event.
This figure shows nicely that the high gain system can
become locally unstable once the nonlinear power
gain comes close to 1. On the other hand, if a low
nonlinear gain is measured, the user can conclude that
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 Fig. 6.: Open and closed loop transfer function (Left); Nyquist plot (Right) of the linear part of the system.
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there is no risk that the system will become unstable.
The Nyquist plot for the best linear approximation of
the high gain system close to the instability bound is
given in Fig. 9 It is clear that this system is still far

away from an unstable behaviour. The results for the
low gain system are given in Fig. 10. The gain comes
close to 1 and drops then again for increasing

amplitudes. For these amplitudes, the system behaves
again more linearly. Remark that in this case, using
the nonlinear gain criterion, it would not be possible
to guarantee the stability in the zone where the gain is
very close to 1. Without prior knowledge, this zone
would be classified as potential unstable if only one
experiment is made. 

5.2 Example 2

In this example we show the results for the example in
the introduction. It is the same system as in example
1, but the feedback gain is changed to . Only
the high gain case is analysed here The same

conclusion can be made as before. 

6. DEALING WITH PROCESS NOISE

In the presence of process noise, the previous method
can not be directly applied since  and

 will also include the impact of the process
noise. So we need a procedure to separate the process
noise from the error term . This can be easily
done by making the input periodic, for example by
repeating the random excitation periodically:

, (16)

with  the remainder of , so that a
signal with period  is created. Once the transients
disappeared, and assuming that a periodic input
results in a periodic output for the considered class of
nonlinear systems (e.g. no bifurcations are allowed),
the process noise variance on the signal  or

 is estimated as:

, (17)
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with  the number of measured periods, and 

(18)

the sample mean of the signal. For sufficiently large
data samples, the uncertainty on the variance estimate
is an , for example for white noise and

, it is . 

The gain estimate becomes

(19)

The factor 2 is due to the difference that is made to
obtain . It is clear the  sets the
minimum level of the nonlinear distortions that can be
detected under the noise floor . If the differences
in (19) drop to far below , the estimate 
becomes unreliable. The appearance of such a
situation can be detected by monitoring the levels
during the measurements.

This method was applied to Example 5.1 where a
white process noise with standard deviation 0.01 was
added, , , and .
The results for 10 repeated runs are given in Fig. 12

From this figure it can be observed that

- It is not possible to measure the nonlinear gain in the
presence of process noise without applying the
correction.

- The corrected estimate coincides well with the gain
obtained in the absence of process noise.

- The nonlinear errors can be detected even far below
the process noise levels as can be observed from the
low levels of the nonlinear fraction (ranging from a
few% up to about 50% in this test).

- By increasing the experiment length ( ) it is
possible to decrease the nonlinear level that can still
be detected.

7. CONCLUSIONS

In this paper we presented a simple experimental
method to check if a nonlinear system is ‘close’ to its
potential unstable operation. A nonlinear power gain
is introduced, and a simple measurement procedure is
setup to obtain this gain from 2 experiments. No
nonlinear model of the system is needed. The
nonlinear gain is used as an indication to the user how
close the nonlinear feedback loop comes to a (local)
unstable behaviour. The major advantage of the
method is its simplicity. The major disadvantage is
the stochastic behaviour of the gain factor, due to the
stochastic nature of the input signal. This might lead
to long experiments in order to reduce this variability
in the amplitude range that comes close to the
unstable behaviour. The method can also be applied in
the presence of process noise.
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δĜNL
2

no noise compensation

no noise distortion

N


	1 . Introduction.
	Fig. 1. : A nonlinear system captured in a linear feedback loop.
	Fig. 2. : Measurement of the level of nonlinearity at the output of the closed loop system.
	Fig. 3. : Nyquist plot of the linearized system.

	2 . Linear REPRESENTATION of THE nonlinear system
	, (1)
	(2)
	Fig. 4. : Feedback representation of the nonlinear loop for a given linear model.

	, and . (3)

	3 . Study of the BIBO STABILITY
	(4)
	Fig. 5. : Feedback representation of the nonlinear loop for a given linear model .


	Definition 1: � is the nonlinear gain
	(5)
	(6)

	Theorem 1 :�If , is stable, and , then the output is bounded by
	, (7)
	, (8)

	Theorem 2 :�If , , is stable, and , the output is bounded by
	, (9)

	4 . Experimental stability verification
	4.1 Method
	. (10)
	. (11)

	4.2 Discussion
	5 . Simulation

	5.1 Example 1
	, . (12)
	; (13)
	, (14)
	. (15)
	Fig. 6. : Open and closed loop transfer function (Left); Nyquist plot (Right) of the linear part ...
	Fig. 7. : The characteristic of the static nonlinear part of the system, for two different gains....
	Fig. 8. : The percentiles of the squared nonlinear power gain and the probability to get an unsta...
	Fig. 9. : Nyquist plot of the original linear system (broken line), and the linearized system (fu...
	Fig. 10. : The squared nonlinear power gain as a function of the input amplitude. The results are...


	5.2 Example 2
	Fig. 11. : The squared nonlinear power gain as a function of the input amplitude. The results are...
	6 . Dealing with process noise
	, (16)
	, (17)
	(18)
	(19)
	Fig. 12. : Gray line: mean value of the squared nonlinear power gain ; gray +: the squared nonlin...


	7 . Conclusions
	8 . References

	Identification of the STABILITY OF FEEDBACK SYSTEMS IN THE PRESENCE OF NONLINEAR DISTORTIONS
	J. Schoukens (*), R. Pintelon (*), T. Dobrowiecki(**)
	(*): Vrije Universiteit Brussel, dept. ELEC, Pleinlaan 2, B1050 Brussels, Belgium (**): Budapest ...


