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Abstract: In this paper, the dynamics of a DC-DC boost power converter under
variable structure control is studied applying bifurcation analysis techniques. The
switching hyperplane coefficients are considered as bifurcation parameters. The
dynamic phenomena detected in this work suggest new types of sliding bifurcations.
This analysis is relevant in the context of sliding mode control with auxiliary adaptive
strategies, since bifurcation analysis is a suitable tool to investigate global stability.
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1. INTRODUCTION

Switching systems, also denominated piecewise
smooth systems, appear quite frequently in differ-
ent engineering areas. The dynamic models that
describe them are generally composed by differen-
tial equations with discontinuous righthand sides
(Filippov, 1988). The theory of Variable Struc-
ture Systems (VSS) provides useful tools to deal
with difficulties associated to this class of dynamic
models (Utkin, 1978).

Power electronic devices are a typical example of
such systems. Their operation is based on switch-
ing between two or more different topologies.
For that reason they can generally be described
though piecewise smooth dynamic systems.

Synthesis of controllers for power electronic switch-
ing devices is traditionally done by means of the
so called averaged state space models (Kassakian
et al., 1991). Continuous feedback control laws
are implemented with the help of Pulse Width
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Modulation (PWM). Thus, the way to deal with
the discontinuity of these systems is avoiding them
through the use of high frequency PWM switch-
ing. This technique makes the averaging suitable.
The main problem of that procedure is that, most
of the time, these averaged models are nonlinear
and the control scheme employed is based on lin-
earization around the desired equilibrium point.
As it is well known, this technique imposes limi-
tations on the operation range of the system. On
the other hand, nonlinear control laws can be de-
signed directly from the averaged model (Escobar
et al., 1999)

In the last decade, a variety of complex behaviours
associated with this PWM control scheme has
been reported (Deane and Hamill, 1990), (Hamill
et al., 1992), (Tse, 1994), (Yuan et al., 1998),
(di Bernardo et al., 1998), (Kousaka et al., 2000).
Bifurcations and Chaos were shown to be frequent
in such systems. These features are possible even
for second order systems because the presence of
an external PWM sawtooth carrier wave makes
these systems non-autonomous. Even featuring
these somewhat strange phenomena, PWM based
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control is still largely used in power electronics.
Besides, despite the fact that the power electronic
devices are typical variable structure systems,
their controllers are rarely designed employing the
results of the VSS theory and sliding modes. One
of the reasons for this is that sliding mode con-
trollers applied to the boost converter make the
latter susceptible to load resistance changes and
source disturbances. This drawback can be over-
come by the use of appropriate adaptive schemes
as reported in Escobar et al. (1999).

The main purpose of this paper is to characterize
the possible behavior modes of a DC-DC boost
converter subject to a variable structure control.
Bifurcation analysis is performed considering vari-
ation on the controller parameters which, in the
present case, are the coefficients of the switching
hyperplane. This analysis is relevant since any
adaptive scheme is based on the dynamic update
of these coefficients.

This paper is organized as follows. Some basic
results on Variable Structure Systems are pre-
sented in Section 2. Section 3 describes the model
of the boost converter. Section 4 deals with the
equilibrium analysis of the system as well as the
bifurcation analysis of such equilibria. Section 5
presents some final remarks concerning the results
presented in this paper.

2. PREVIOUS RESULTS ON VSS

Consider the generic nonlinear dynamic variable
structure system described by

ẋ = f(t, x) + B(t, x)u(t, x) (1)

with

u(t, x) =
{

u+(t, x), if σ(x) > 0
u−(t, x), if σ(x) < 0,

(2)

where x ∈ Rn is the state vector, u ∈ R is a discon-
tinuous control function, f : Df ⊂ R × Rn → Rn

and B : DB ⊂ R×Rn → Rn are continuous vector
functions with continuous derivatives with respect
to all their arguments and σ : Rn → R is a scalar
function of the state vector.

The control function undergoes discontinuity when
the state vector belongs to the set

S = {x ∈ Rn/σ(x) = 0} (3)

since S is a switching surface between the two
different structures of the system. A sliding mode
may occur on this surface if there is a region in the
state space for which the phase velocity ẋ points
toward S. The subset of S where this happens is
called sliding domain. In order to determine this

domain it is necessary to find the region in the
state space where the function σ satisfies

V (x) =
1
2
σ2(x) > 0; V̇ (x) = σ

∂σ

∂x

dx

dt
< 0. (4)

(Itkis, 1976), (DeCarlo et al., 1988). The condi-
tions stated in (4) define the following set

Ψ =

{
x ∈ Rn

/
σ

∂σ

∂x

dx

dt
< 0

}
, (5)

which is the domain where V (x) is a Lyapunov
function. The sliding domain will be Ω = S∩Ψ. If
Ω is empty, sliding modes do not exist. Otherwise,
the state trajectories that hit Ω start to move
along the switching surface in a sliding mode.
The state equations do not describe this dynam-
ics in an explicit way. To compute the sliding
mode equation one has to employ methods of
VSS theory (Utkin, 1978), (Filippov, 1988). One
possibility is to use the equivalent control given
by

ueq = − [Jσ(x)B(t, x)]−1 · Jσ(x)f(t, x) (6)

where Jσ(x) is the jacobian matrix of the function
σ with respect to the state vector x. In the case
of the single input system (1) it becomes

Jσ(x) = [ ∂σ
∂x1

∂σ
∂x2

. . . ∂σ
∂xn

] . (7)

The equivalent control represents a fictitious con-
tinuous control function that can replace the dis-
continuous control u in (1) when the state vector
moves along the discontinuity surface. Evaluating
the state equation (1) for the equivalent control
(6) the following dynamic equation is obtained

ẋ(t) =
[
I −B(t, x) · [JσB(t, x)]−1 · Jσ

]
f(t, x) (8)

which describes the system dynamics on S in the
presence of a sliding mode.

The sliding trajectory moves along the domain Ω
until meeting its boundary. When this happens,
the state vector leaves the sliding domain and
follows a trajectory leading to: (i) some attractor
that does not belong to Ω or (ii) a closed sliding
orbit (Johansson et al., 1997). Beside this possi-
bility, there is another behaviour for the system
trajectory in a sliding mode. It can move along
the sliding domain converging on an equilibrium
point in Ω. These two different behaviours suggest
a distinction between natural equilibria, as the sta-
tionary points of all the different structure of the
system will be referred to, and sliding equilibria, as
the equilibria that lie on the sliding domain will be
called. The natural equilibrium points admit fur-
ther classification. A natural equilibrium X is said
to be a real equilibrium point when it belongs to



the region in the state space where the dynamics
is determined by the same structure that has X
as an equilibrium. On the other hand, if the point
X is a fixed point of one particular structure of
the system but lies on a region where the system
dynamics is governed by any other structure, then
the fixed point X is called a virtual equilibrium
point (Costa et al., 2000).

3. DC-DC BOOST CONVERTER

A schematic representation of the basic DC-DC
boost converter with ideal switching is given in
Fig. 1. All components are considered ideal and
the boost is assumed to operate in continuous
conduction mode.

Fig. 1. Ideal DC-DC boost model.

In Fig. 1, R represents a load resistance and E > 0
is the external voltage source. The voltage vout

over R is the system output which should be
driven to a regulated desired value vout = VC > E.
The state variables are the indutor current iL
and the capacitor voltage vC , which are both
nonnegative.

An elementary analysis of the circuit in Fig. 1
leads to the mathematical dynamic model





ẋ1 = − 1
L

(
1− q(t, x)

)
x2 +

1
L

E

ẋ2 =
1
C

(
1− q(t, x)

)
x1 − 1

RC
x2

(9)

where x1 = iL and x2 = vC .

In real applications, changes in the parameters R
and E represent load disturbances and voltage-
source fluctuations, respectively.

Equation (9) can be rearranged as
[

ẋ1

ẋ2

]
=

[
E−x2

L
x1
C − x2

RC

]
+

[
x2
L
−x1

C

]
· q(t, x). (10)

Note that (10) has the same form of (1) with q
playing the role of u.

The possible equilibrium points of the considered
system are obtained from Eq. (9) after eliminat-
ing the switching control function q. The set of
equilibria obtained by this procedure is

Γ =

{
(x1, x2) ∈ R2

/
x1 =

x2
2

RE

}
. (11)

All possible equilibrium points of (9) must lie on
the manifold Γ regardless of the function q. Note
that the set Γ depends on the values of R and E.

Unlike PWM control, the variable structure con-
trol applied to the boost converter does not de-
pend explicitly on time. Instead, it is a discontin-
uous function of the state vector of the form

q(x) =
{

1, if σ(x) > 0
0, if σ(x) < 0 (12)

and σ can be chosen as

σ(x) = s0 + s1x1 + s2x2. (13)

The function σ is responsible for the selection of
the control structure in such a way that the set
S as defined in (3) separates the state space into
two regions. For each of them the switch Q is in
a different position. When σ < 0, q = 0 and Eq.
(9) has only one equilibrium point given by

X0 =
[

x̄01

x̄02

]
=

[
E/R
E

]
(14)

with eigenvalues

λ1,2 = − 1
2RC

±
√(

1
2RC

)2

− 1
LC

. (15)

Note that X0 belongs to the set Γ.

For σ > 0, q = 1 and the system exhibits no
equilibrium point. The trajectories are analyti-
cally obtained as

{
x1(t) = x10 + E

L t

x2(t) = x20e
− t

RC

(16)

where x10, and x20 are the initial conditions. For
σ = 0, the control function is undefined and
sliding modes can exist or not. The switching
surface S is defined in terms of the equation σ = 0,
which can be rearranged as

x2 = K + αx1 (17)

with α and K defined as

α = −s1

s2
, K = −s0

s2
. (18)

The condition for the existence of sliding modes is
that the set Ω = S∩Ψ as defined in Section 2 is not
empty. To compute Ω it is necessary to know the
domain Ψ of the Lyapunov function V (x) = 0.5σ2

for the surface S. This can be done evaluating
(4) for the system formed by (9), (12) and (13)
considering the two possible values of q. For q = 0
this procedure gives





x2 < s1RCE+s2RLx1
s1RC+s2L for s2 > −s1

RC
L

x2 > s1RCE+s2RLx1
s1RC+s2L for s2 < −s1

RC
L

(19)



and for q = 1 it follows that




x2 > s1
s2

RCE
L for s2 > 0

x2 < s1
s2

RCE
L for s2 < 0.

(20)

Thus, the region Ψ is defined as

Ψ =
{
x ∈ R2/ x satisfies (19) and (20)

}
.(21)

If a segment of the surface S lies inside the region
Ψ then this segment is the sliding mode domain
Ω. Once the state vector hits Ω, a sliding motion
takes place. Sliding equilibria will appear if Ω
intercepts Γ. To determine these points, consider
first the intersections of S and Γ. These points can
be readily computed from Eqs. (11) and (17) as

X̂1 =
[

x̂11

x̂12

]
=



−K

α + RE−√R2E2−4KαRE
2α2

RE
2α −

√
R2E2−4KαRE

2α


 (22)

X̂2 =
[

x̂21

x̂22

]
=



−K

α + RE+
√

R2E2−4KαRE
2α2

RE
2α +

√
R2E2−4KαRE

2α


 (23)

The points X̂1 and X̂2 have physical meaning only
if their components are real numbers. Otherwise,
the intersections between S and Γ do not exist.
Besides, in order to be sliding equilibrium points,
X̂1 and X̂2 must belong to Ψ. When this happens
they are renamed as X1 = X̂1 and X2 = X̂2

denoting sliding equilibrium points.

4. BIFURCATION ANALYSIS

This Section analyses the dynamical behaviour
of the boost subject to variable structure control
when parameters of the switching surface vary.
The switching surfaces coefficients K and α are
taken as bifurcation parameters. Changing their
values, a bifurcation set in the plane (K, α) is
obtained. For the sake of brevity, Fig. 2 only shows
the case of s2 > 0, despite the fact that this anal-
ysis can be applied to all cases. In this diagram
each continuous line represents a bifurcation phe-
nomenon. The different bifurcation curves can be
determined by the analytic conditions described
below.

The condition that makes X̂1 and X̂2 have real
components (see Eqs. (22), (23)) is shown to be





K > RE
4α for α < 0,

K < RE
4α for α > 0.

(24)

The region defined by (24) is bounded by a hy-
perbola which is shown in Fig. 2. Note that only
the positive branch of the hyperbola has physical
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Fig. 2. Bifurcation set considering (K, α) as bi-
furcation parameters for s2 > 0, E = 48V ,
R = 40Ω, C = 10µF and L = 1.4mH

meaning since, as the state variables are supposed
to be nonnegative, S is required to lie at least
partially in the first quadrant of the state space.
This implies that K and α can not be both nega-
tive. Hence, only the second inequality in (24) is
necessary.

The natural equilibrium point X0 changes its
character according to the position of the switch-
ing line S. The condition for X0 to be a real
equilibrium is

α > R− R

E
K. (25)

In Fig. 2 this corresponds to the straight line
tangent to the positive branch of the hyperbolic
boundary.

It should be noticed that when α tends to zero, the
point X1 remains finite and X2 goes to infinity
since α is the slope of the switching line. When
α < 0 the point X2 has a negative component and
hence, no physical meaning. This fact is illustrated
in Fig. 2 by a continuous line in α = 0.

To analyse the existence of sliding modes is equiv-
alent to finding the condition under which the set
Ω = S ∩ Ψ is not empty. A merely geometric
analysis based on Eqs. (17) and (21) permits to
conclude that this condition is that the point
(K,α) must belong to the set

Φ =
{
(K,α) ∈ R2/α > 0

} ∪
{

(K,α) ∈ R2/K > −α3 C2

L2 RE − αC
L RE

}
.
(26)

The region Φ is filled in grey as shown in Fig. 2.

The bifurcation set (shown in Fig. 2) captures all
the behaviour modes that the analysed system
can exhibit for s2 > 0. In order to clarify the
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Fig. 3. Bifurcation diagrams considering K as
bifurcation parameter for four different values
of α. Continuous and dashed lines are stable
and unstable equilibria respectively.

bifurcation phenomena described in Fig. 2, four
different values of α were chosen to construct
bifurcation diagrams. The variables represented in
the y-axis of these diagrams are the 2-norm of the
position vectors corresponding to the equilibrium
points. For the system analysed in this work, only
bifurcations of equilibria were found.

Fig. 3a shows the transformation of X0 in a real
stable focus at the point Ka. At the same Ka,
the stable sliding equilibrium X2 steps outside
the sliding domain being no more an equilibrium
point. These two simultaneous phenomena pro-
duce a continuous path in the bifurcation diagram
that seems to correspond to the displacement of a
single equilibrium point under a parameter vari-
ation. However, this apparently single continuous
path is in fact the union of two different paths
corresponding to two equilibria of different nature.

The second bifurcation diagram (see Fig. 3b)
depicts two different phenomena. First, at Kb,
two new equilibria appear, X0 becomes a real
stable equilibrium point and X̂1 turns into the
sliding equilibrium X1. The latter one behaves
like a saddle point since it divides the state space
into two regions of attraction, one for X0 and
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Fig. 4. Phase diagrams for different values of K.
The dotted line corresponds to the set Γ
and the dashed/dotted line is the switching
surface S. The dark dot is the natural equi-
librium point, the X is the unstable sliding
equilibrium and the circle is the stable sliding
equilibrium. The regions Ψ in a, b, and c are
filed in light grey, and the dark grey region
in d is the domain of attraction of X2

another for X2. As K increases, a saddle-node-
like bifurcation takes place at Kc, where X1 and
X2 collapse. Note that these two points lie in
the sliding domain and therefore both are sliding
equilibria.

Fig. 3c shows a bifurcation diagram for a negative
α. As can be seen in Fig. 2, this case involves
a transition between the nonexistence and the
existence of sliding modes. This transition is in-
dicated in the figure by a dashed/doted line. The
phenomenon that occurs at Kd is similar to that
at Kb.

Fig. 3d displays at the point Ke the sudden
single birth of the equilibrium point X0, which
correspond to the transition from a virtual to a
real equilibrium. Increasing K a little further a
sliding mode arises at Kf and brings the sliding
unstable equilibrium point X1 with it.

All the phenomena described above are associated
with topological changes of the state space flow
and, as such, can be classified as bifurcations.
To illustrate this idea the bifurcation diagram of
Fig. 3b (α = 8) was chosen in order to construct
phase portraits for the three different possibili-
ties of K. These portraits are shown in Fig. 4
together with a representation of the attraction
basins for the case with K = 55. When K = 35,
X2 is the only equilibrium point, which is globally
asymptotically stable. For the sake of brevity this



stability will not be demonstrated here. The state
space flow for the region between the two bifur-
cations at Kb and Kc is topologically equivalent
to that of Fig. 4b. The presence of the sliding
saddle point X1 separates the attraction basins
of X0 and X2 as can be seen in Fig. 4d. For
values of K above the bifurcation point Kc the
only equilibrium point is the natural focus at X0

that is globally asymptotically stable (as shown in
Fig. 4c).

5. CONCLUSIONS

The analysis performed in this paper allowed
for the detection of some bifurcation phenomena
that, as far as the authors know, have not been
reported yet. These phenomena can be classified
into a wider family of sliding bifurcations, which
includes the one reported by di Bernardo et al.
(1999).

The variable structure control applied to the boost
converter shows sliding regimes and some bifurca-
tions of equilibrium points related to it.

As mentioned before, to reject load and source
disturbances in the sliding mode controlled boost,
some kind of adaptive scheme is necessary. This
adaptation can change the values of the controller
parameters and hence the position of the switch-
ing surface. The bifurcation analysis plays an im-
portant role in this scenario since, in order to
guarantee global stability, the surface adaptation
should not provoke bifurcations of the equilibrium
points.

It is to be remarked that, despite the generality of
the analytic results, the bifurcation set and dia-
grams graphically shown in this paper are partial.
They only consider the case of s2 > 0 and do
not take into account the effects of variations in
the physical components of the boost converter
or consider the effects of load or source distur-
bances. However, the bifurcation set does not suf-
fer topological changes when the parameters R
and E vary. This fact can be checked by a simple
examination of the equations that produce that
set, namely (24), (25) and (26) where R and E
appear as gain factors.

Further research will be conducted in order to
obtain experimental results and to apply this
method to other power converters.
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(1997). Limit cycles with chattering in relay
feedback systems. Proc. of the 36th CDC,
pp. 1443–1448.

Kassakian, J. G., M.F. Schlecht and G. C. Vergh-
ese (1991). Principles of Power Electronics.
Addison-Wesley. Massachusetts.

Kousaka, T., T. Kido, T. Ueta, H. Kawakami and
M. Abe (2000). Analysis of border-collision
bifurcation in a simple circuit. Proc. of the
Int. Symp. bn Circ. and Syst., pp. II–488–II–
084.

Tse, C. K. (1994). Flip bifurcation and chaos in
a three-state boost switching regulator. IEEE
Trans. on Circ. and Syst. Part I, 42(1), 16–
23.

Utkin, V.I. (1978). Sliding Modes and their Ap-
plication in Variable Structure Systems. MIR
Publishers. Moscow.

Yuan, G., S. Banerjee, E. Ott and J. A. Yorke
(1998). Border-collision bifurcations in the
buck converter. IEEE Trans. on Circ. and
Syst. Part I, 45(7), 707–716.


