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Abstract: In this paper the dynamics of the Lotka-Volterra predator-prey model
subject to a variable structure control is studied applying bifurcation analysis
techniques. This methodology allows to determine a complete characterization of
the system dynamics when some selected control parameters are changed. The main
contributions of the paper are: (i) an analysis of the effects of the harvesting policy for
different combinations of the control parameters; (ii) the establishment of necessary
and sufficient conditions in order to guarantee global stability of a desired equilibrium
in predator-prey populations under harvesting action.

Keywords: Ecological Modelling, Bifurcation Analysis, Variable Structure Control,
Sliding Mode, Predator-Prey.

1. INTRODUCTION

Variable structure systems appear quite frequently
in engineering problems but they are not so fre-
quent in other areas like biology or ecology.

A whole family of predator-prey models has been
the object of multidisciplinar research by many
authors (Bhattacharya and Begum, 1996), (Azar
et al., 1995), (Krivan, 1996), (Malchow, 2000),
(Neubert et al., 1995) but the most typical exam-
ple of a dynamic model for an ecological system
is the well-known Lotka-Volterra predator-prey
model. This system has been extensively studied
in the non-linear dynamic systems literature in its
original form. However, the controlled version of
this model has been less investigated and shows
much more complex dynamics than the uncon-
trolled one. In ecological systems the control ac-
tion can be associated with human interference in
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the natural environment, which can take the form
of a harvesting policy.

Models like the Lotka-Volterra are extremely im-
portant to the concept of Sustainable Exploitation
of Natural Resources. They allow one to evaluate
the exploitation policies and their effect on the
dynamic behaviour of the target ecosystem. Such
analysis is useful to determine the safety levels of
harvesting and to understand the limits of Na-
ture’s capacity to bear human interference.

This paper studies the dynamics of the Lotka-
Volterra predator-prey model subject to a vari-
able structure control using bifurcation analy-
sis techniques (Kuznetsov, 1995), (Guckenheimer
and Holmes, 1983). The bifurcation theory per-
mits a complete characterization of the system
dynamics when changing some selected parame-
ters. For the system analysed in this work, the
bifurcation parameters are the ones that model
the human action. Some necessary conditions (not
sufficient) for the global stability of the desired
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equilibrium populations of this kind of system
have already been reported in a previous work
(Costa et al., 2000). The present work uses the
bifurcation theory in order to derive necessary
and sufficient conditions to guarantee global sta-
bility of this equilibrium point. This equilibrium
is important because, if it is stable, the survival of
both populations is guaranteed under sustainable
exploitation. Furthermore, the analysis developed
here allows one to determine all the different
behaviour modes for the variable structure con-
trolled Lotka-Volterra system. This analysis can
also bring new insights into the problem of con-
trolling ecological systems and into the Theory of
Variable Structure Systems.

This paper is organized as follows. Some basic
results on variable structure systems are presented
in Section 2. Section 3 describes the controlled
Lotka-Volterra model. Section 4 deals with the
equilibrium analysis of the system while the bi-
furcation analysis is developed in Section 5.

2. SOME FACTS ABOUT VARIABLE
STRUCTURE CONTROL

Consider the generic nonlinear dynamic variable
structure system in the form

ẋ = f(t, x) + B(t, x)u(t, x) (1)

with

u(t, x) =
{

u+(t, x), if σ(x) > 0
u−(t, x), if σ(x) < 0,

(2)

where x ∈ Rn is the state vector, u ∈ R is a discon-
tinuous control function, f : Df ⊂ R × Rn → Rn

and B : DB ⊂ R×Rn → Rn are continuous vector
functions with continuous derivatives with respect
to all their arguments and σ : Rn → R is a scalar
function of the state vector.

The control function is undefined when the state
vector belongs to the set

S = {x ∈ Rn/σ(x) = 0} (3)

since S is a discontinuity surface between the two
different structures of the system. A sliding mode
may occur on this surface if the function σ is such
that

V (x) =
σ2(x)

2
> 0; V̇ (x) = σ

∂σ

∂x

dx

dt
< 0. (4)

Since σ is a real valued function, the subset of the
state space that matches condition (4) is

Ψ =

{
x ∈ Rn

/
σ

∂σ

∂x

dx

dt
< 0

}
, (5)

which is the domain for which V (x) is a Lyapunov
function. The sliding domain is given by

Ω = S ∩Ψ. (6)

If Ω is empty, sliding modes are not possible. Oth-
erwise, the solution of (1) when x ∈ S represents a
sliding motion on the surface S and is given by the
theory of variable structure systems (Utkin, 1978)
in terms of the equivalent control

ueq = − [Jσ(x)B(t, x)]−1 · Jσ(x)f(t, x) (7)

where Jσ(x) is the jacobian matrix of the function
σ with respect to the state vector x. In the case
of the single input system (1) it becomes

Jσ(x) = [ ∂σ
∂x1

∂σ
∂x2

. . . ∂σ
∂xn

] . (8)

The next step in the analysis of this type of system
is finding the equilibrium points. Two types of
equilibria are possible in systems with variable
structure. Those that belong to the sliding domain
Ω and those that do not. In this paper the first
type will be referred to as sliding equilibrium,
whereas the second one will be called natural
equilibrium. This last type is subdivided in two
classes: real equilibria and virtual equilibria (Costa
et al., 2000). To define them properly it must be
borne in mind that the dynamics of the system
formed by (1) and (2) is governed by two different
structures. Each of them corresponds to one of
the control laws defined in (2) and is valid for a
different region of the state space. These regions
are separated from each other by the boundary S.
Each structure posses its own equilibrium points,
which are the solutions of the equilibrium con-
dition ẋ = 0 imposed on the equations of the
particular system structure. If any of these solu-
tions lies in the region governed by the structure
that originates it, this solution is defined as a
real equilibrium point, whereas if it is located in
another region it is said to be a virtual equilibrium
point.

3. THE VARIABLE STRUCTURE
CONTROLLED LOTKA-VOLTERRA MODEL

The system analysed in this paper corresponds to
the Lotka-Volterra model subject to a switching
harvesting policy with constant harvesting effort.
The equations of this model are

{
ẋ1 = r1x1 − ax1x2 − u1(x1, x2)
ẋ2 = −r2x2 + bx1x2 − u2(x1, x2),

(9)

where x1 stands for the population of preys and
r1 is its specific growth rate, x2 stands for the
population of predators and r2 is its specific death
rate. The parameter a models the reduction in



the population of preys as a consequence of their
interaction with predators and b is the growth
rate of the predator population due to interaction
between prey and predators. The control function
u is given by

u(x) =
[

q(σ)ε1x1

q(σ)ε2x2

]
(10)

where ε1 and ε2 are the harvesting efforts for the
preys and predators respectively. The function q
is defined as

q(σ) =
{ 0 if σ < 0

1 if σ > 0
(11)

with

σ(x) = s0 + s1x1 + s2x2 (12)

and models the switching between the two struc-
tures of the system. Eqs. (11) and (12) can be
understood as a kind of rule that allows harvesting
if the weighted sum of the populations of preys
and predators exceeds a certain limit represented
by the value of −s0. The parameters s1 and s2 are
the weighting factors of the populations. Note that
the resulting system composed by (9-12) takes the
form of (1) where q in (10) plays the role of u in
(1).

4. EQUILIBRIUM ANALYSIS

This section deals with the equilibrium analysis of
the system described in Section 3. Imposing the
equilibrium condition on (9) one obtains

{
r1x1 − ax1x2 − qε1x1 = 0
−r2x2 + bx1x2 − qε2x2 = 0.

(13)

Any equilibrium point must satisfy (13) regardless
of the function q, be it continuous or discrete.
In the case of this paper, q is a value in the
discrete set {0; 1} that models the forbiddance or
permission of harvesting. Eliminating q from (13)
it follows that the non-trivial equilibrium points
lies on the manifold

Γ =

{
x ∈ R2

∣∣∣∣∣ x2 =
(

ε1r2

ε2a
+

r1

a

)
− ε1b

ε2a
x1

}
.(14)

The natural equilibria of the system can be found
by substituting the two possible values of q in (13).
For q = 0 the solution is

X0 =
[

x̄01

x̄02

]
=

[
r2
b
r1
a

]
(15)

which is a degenerated equilibrium (a center). The
second subscript index denotes the components of
the state vector. For q = 1 the solution is

X1 =
[

x̄11

x̄12

]
=

[
r2+ε2

b
r1−ε1

a

]
(16)

which is also a center if only the physically sig-
nificant case is considered. Note that X0 and X1

belong to Γ.

The system (9) with the control given by (10),
(11) and (12) can only exhibit sliding equilibria if
the switching surface S intercepts the equilibrium
manifold Γ. These two sets are straight lines in
the state space, so there is only one intersection
point between them. This point is given by

Xint =
[

xint1

xint2

]
=




ε1r2+ε2r1+ε2a
s0
s2

ε1b−ε2a
s1
s2

− s0
s2
− s1

s2

ε1r2+ε2r1+ε2a
s0
s2

ε1b−ε2a
s1
s2


 .(17)

Xint is a sliding equilibrium point if and only if
it belongs to the sliding domain Ω. To compute
Ω it is necessary to find the region Ψ for which
V (x) = σ2/2 is a Lyapunov function. Computing
(5) for the controlled Lotka-Volterra model, the
conditions obtained for Ψ are




x2 > s1r1x1
(s1a−s2b)x1+s2r2

for x1 > s2r2
s2b−s1a ,

x2 < s1r1x1
(s1a−s2b)x1+s2r2

for x1 < s2r2
s2b−s1a

(18)

and




x2 > s1(r1−ε1)x1
(s1a−s2b)x1+s2(r2+ε2)

for x1 < s2(r2+ε2)
s2b−s1a ,

x2 < s1(r1−ε1)x1
(s1a−s2b)x1+s2(r2+ε2)

for x1 > s2(r2+ε2)
s2b−s1a .

(19)

Therefore, the region Ψ is

Ψ =
{
x ∈ R2/ x satisfies (18) and (19)

}
. (20)

So, if the point Xint belongs to Ψ, the sliding
equilibrium point is X2 = Xint. If the set Ω =
S ∩ Ψ is not empty but does not contain Xint,
then there is a sliding mode in Ω without sliding
equilibria.

The real or virtual characters of the equilibrium
points X0 and X1 also depend on Xint because
this belongs to the surface that separates the two
different structures of the state space dynamics.
Therefore the point Xint, besides determining the
position of the sliding equilibrium, also determines
if the natural equilibria are real or virtual.

5. BIFURCATION ANALYSIS

This section analyses the bifurcation phenomena
that the Lotka-Volterra model can display due to
changes in the parameters of the variable struc-
ture control defined by Eqs. (10-12).



For the sake of simplicity, the harvesting efforts
ε1 and ε2 will be kept constant while the surface
parameters will be varied keeping s2 positive.

With σ given by (12), the switching surface S
corresponds to the solutions of σ(x) = 0 that can
be written as

x2 = K + αx1 (21)

where

K = −s0

s2
and α = −s1

s2

will be treated as bifurcation parameters. Because
the state variables represent the size of the popula-
tions, only the first quadrant of the state space has
a physical meaning. Consequently, if K and α are
both negative, the switching surface lies outside
the physically meaningful region of the parameter
space and does not represent a real switching.
Note that the position of the switching surface
S and the point Xint can be put in terms of these
new parameters.

As stated in Section 4, X0 and X1 are real or
virtual depending on the position of Xint. If Xint

lies between X0 and X1 both of them are real
or virtual. Otherwise one of them is real and the
other virtual. To distinguish between these two
cases it is sufficient to consider the condition

x̄01 < x̄21 < x̄11 (22)

since X0, X1 and Xint lie on the same straight
line. It is straightforward to show that (22) is true
if K and α satisfy

α > −ε1
ε2

b

a
⇒





α < b
a

r1
r2
− b

r2
K

α > b
a

(r1−ε1)
(r2+ε2)

− b
(r2+ε2)

K
(23)

α < −ε1
ε2

b

a
⇒





α > b
a

r1
r2
− b

r2
K

α < b
a

(r1−ε1)
(r2+ε2)

− b
(r2+ε2)

K.
(24)

The condition (23) bounds the region of the pa-
rameter space (K; α) for which the natural equi-
librium points are both virtual and (24) delimits
the region where X0 and X1 are both real equilib-
rium points. Fig. 1 shows a graphic representation
of the parameter space and its regions considering
a = b = r1 = r2 = s2 = 1, ε1 = 0.5 and ε2 = 0.4.

To analyse the existence of sliding modes im-
plies finding the condition under which the set
Ω = S ∩ Ψ is not empty. It is straightforward
to show that if α < 0 then Ω is not empty. For
α > 0 there is a lower boundary on the region Ψ
represented by the point

Xc =
[

xc1

xc2

]
=

[ ε1r2+ε2r1
ε1b+ε1aα

α ε1r2+ε2r1
ε2b+ε2aα

]
(25)
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Fig. 1. Bifurcation set for the Lotka-Volterra
model subject to a variable structure control.

which is a common point between Γ and the two
boundaries of Ψ. A sliding mode will exist if and
only if S intercepts Γ above the point Xc. The
condition that guarantees this is

xint1 < xc1 , (26)

which after some algebra becomes




α <
bK(

ε2
ε1
− 1

)
r1 −

(
ε1
ε2
− 1

)
r2 + aK

for α <
(

ε1
ε2
− 1

)
r2
a −

(
ε2
ε1
− 1

)
r1
a ,

α >
bK(

ε2
ε1
− 1

)
r1 −

(
ε1
ε2
− 1

)
r2 + aK

for α >
(

ε1
ε2
− 1

)
r2
a −

(
ε2
ε1
− 1

)
r1
a .

(27)

The condition (27) describes a region in the space
(K; α) bounded by a hyperbola that is valid for
α > 0. In Fig. 1, the hyperbola is a continuous
line in the region where it is meaningful and a
dashed line where it is not. When the parameters
are inside this region sliding modes can appear in
the state space.

The set formed by the boundaries of these differ-
ent regions in the parameter space is referred to as
bifurcation set (Fig. 1) and it describes all possible
combinations of the bifurcation parameters that
lead to different topologies of the flow in the state
space.

To show the richness of the possible dynamics that
the system can exhibit, several combinations of
the parameters K and α were chosen to build
phase diagrams. Three different levels of α are
considered (see Fig. 1). For each one, K varies in
order to sample one point for each region. These
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Fig. 2. Phase diagrams for different regions of the
parameter space as indicated by the points
a-h in Fig. 1. The points X0 and X1 are
indicated by dots, Xint is marked with a
star and Xc with a circle. The region Ψ is
filled in grey, Γ is a dashed line and Ω is
dashed/doted.

points are identified in the figure by the letters
from a to h, which are also used in Fig. 2 to specify
the phase diagrams of these possible cases.

The flow shown in Fig. 2a has a semi-unstable
limit cycle. The trajectories that start from initial
conditions inside the cycle remain in a closed orbit
containing the initial point. This behavior shows
the degenerated character of the equilibrium in-
side the limit cycle. Trajectories starting outside
this cycle diverge from it in a spiral orbit.

The second case, shown in Fig. 2b, is simpler
since there is no limit cycle. The intersection point
between S and Γ is a source of the flow. All
trajectories diverge from it in a spiral orbit. Note
that there is no sliding motion.

Increasing the value of K even more, the flow
assumes a behavior very close to the first case.
The only difference is that now the degenerated
equilibrium point is X0 instead of X1.

Fig. 2d shows the case in which both X0 and X1

are virtual. For this combination of parameters,
the surface S intercepts the region Ψ (shown in
grey) giving rise to the sliding domain Ω. Besides,
there is a sliding equilibrium point on the intersec-
tion between S and Γ. When the trajectories hit Ω
the state vector starts to move along the switching
surface asymptotically converging to the point
X2. This is the most important case since the
equilibrium point is globally asymptotically sta-
ble. This case has already been identified in Costa
et al. (2000), in which a necessary stability condi-
tion was demonstrated.

Moving up the switching surface a little further,
the point of intersection of S and Γ leaves the
region Ψ, being no longer an equilibrium point.
In spite of that, the sliding mode still exists. X0

becomes a real degenerated equilibrium. A semi-
stable limit cycle appears around it. Inside the
limit cycle any initial condition gives rise to a
closed orbit that returns to its initial point, the
same way it does in the case of Fig. 2a and c. The
difference in this case is that all the trajectories
that start outside this limit cycle eventually hit
the sliding domain and slide along Ω until leaving
it. At that instant, the sliding motion ceases and
the trajectory follows the closed orbit of the limit
cycle. This scenario can be seen in Fig. 2e.

Fig. 2f shows a similar phenomenon, but in this
case the real equilibrium point is X1.

The most interesting case is represented in Fig. 2g.
The choice of K and α makes X0 and X1 both
be real equilibrium points and also places Xint in
the sliding domain. This means that X2 = Xint

is an equilibrium point. But now it is unstable,
repelling the sliding trajectories, while some non-
sliding orbits seem to be attracted to it. X2 thus
behaves like a saddle point. And, like all saddle
points, it divides the state space into two basins
of attraction. Their respective attractors are the
semi-stable limit cycles around X0 and X1 as can
be seen in Fig. 3.

The flow of Fig. 2g is a transition between the flow
of Fig. 2f and Fig. 2h, for the latter is simply
the same case of the former, only inverting the
qualities of real and virtual between X0 and X1.

The existence of a set of control parameters that
globally stabilize the system was demonstrated
in a previous work (Costa et al., 2000). That
was done under the implicit assumption that the
intersection of the equilibrium manifold and the
switching line lies on the sliding domain. As can
be seen in Fig. 1, this is not always the case. Xint
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is only a sliding equilibrium point if the values of
the bifurcation parameters lie inside the region of
the space (K;α) that satisfies (23), (24) and (27).

In this paper, it is contended that necessary and
sufficient conditions to guarantee global stability
of the desired equilibrium populations can be
formulated through the following proposition:

Proposition: Under the hypothesis s2 > 0, the
system (9 - 12) has a globally stable equilibrium
point given by (17) if and only if the control
parameters K and α satisfy (23) and (27).

This proposition establishes the boundaries of the
region d in the parameter space (K, α) shown in
Fig. 1. The corresponding phase portrait is shown
in Fig. 2d.

The proof of the stated proposition involves
demonstrating that there is only one stable equi-
librium point and that there is no limit cycle, since
autonomous second order systems can only ex-
hibit these two types of attractors (Guckenheimer
and Holmes, 1983). In this work these two condi-
tions are verified by the bifurcation analysis.

6. FINAL REMARKS

The analysis performed in this work established
all the possible behaviours that the Lotka-Volterra
system can exhibit when subject to variable struc-
ture control, as can be seen in Fig. 1.

In order to guarantee that the harvesting imposed
to the predator and prey populations will not
lead them to extinction, the harvesting policy
must be chosen properly through the selection of
control parameters inside the region d . It is to be
remarked that d is the smallest of all regions in
the parameter space, imposing constraints upon
the selection of the values of control parameters.

The control strategy applied in this paper allows
for the coexistence of the two species and provides
a safe way to exploit natural resources on a
regular basis. Further research will be conducted
in order to extend the results obtained here to
more complex ecosystem models that take into
account the interactions with other environment
elements.

The analysis performed in Section 5 varying the
parameters of the control law detected some
bifurcation-like phenomena related to the sliding
modes. As far as the authors are aware, this kind
of result has not been reported yet. It possibly
indicates the existence of a family of sliding mode
bifurcations that can be of great significance to
the better understanding of nonlinear phenomena
in systems exhibiting sliding motions. Further re-
search will be conducted in order to characterize
these phenomena in a rigorous mathematical fash-
ion.
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