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Abstract: A feedback-based model predictive control (MPC) approach to product quality

improvement that incorporates multivariate statistical techniques has been developed [1].

The objective of the approach is to use existing process measurements to help reduce the

variability of product quality when its online measurement is not feasible.  The approach

is model based and it uses principal component analysis to compress selected process

measurements into scores.  One or more manipulated setpoints are chosen and varied to

control the scores in order to counteract the effect of stochastic process disturbances on

product quality.  The approach assumes that the selected process measurements correlate

with product quality, and that the stochastic disturbances that cause product variability are

stationary.  When implemented on the Tennessee Eastman process the approach resulted

in a 44% reduction in the variability of the product quality.  In this paper the issue of how

to handle non-stationary step upsets is addressed.  A steady state model predictive control

approach is used in conjunction with the dynamic score control to overcome the problems

caused by the step disturbances. Copyright   2000 IFAC

1. BACKGROUND

Statistical process control (SPC) aims at improving

processes and products.  In chemical processes the

two most widely used SPC approaches are principal

component analysis (PCA) [2] and partial least

squares (PLS) [3].  Kresta et al [4] and Wise and

Gallagher [5] have discussed the application of PCA

and PLS in the process industries.  Both PCA and

PLS calculate linear combinations of raw variables,

called scores.  This paper discusses a model

predictive control approach to SPC in which

continuous feedback of score information is used.

The control objective is to reduce the variability of

product quality by changing the setpoints of one or

more control loops in a plant.  The measured

variables used for feedback are a linear

transformation of the process scores calculated from

a PCA model.

The issue of reducing the variation in product quality

when stationary stochastic upsets enter a process has

been addressed in the earlier paper [1].  Often one

does not have either an on-line analyzer or a soft

sensor for determining product quality.  One then has

to rely on taking samples to a laboratory and waiting

for them to be assayed, typically on the order of 8

hours or longer.  It is this case that is addressed here.

The methodology in [1] made use of data based

multivariate statistical process models within a

feedback control system.  It is well known that one

has to be very careful when such models are

incorporated into a feedback system [6].  If normal

process operating data are used for model

development, then the data have a correlation

structure.  The resulting model can be extrapolated by

feedback to a region in which the underlying

correlation structure is no longer valid, and therefor
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the model should not be used.  To avoid this problem,

either some plant testing must be conducted, or the

database used for model development must be rich

enough that it can be used in feedback control

Chen, Mc Avoy, and Piovoso [7] discussed the use of

PCA models in what Piovoso and Kosanovich [8]

termed score control.  In reference [7] a lagged PCA

model was developed and model predictive control

was used to force the PCA scores toward the origin.

Application of the approach to a binary distillation

tower and the Tennessee Eastman process [9] was

discussed.  It was found that the score controller

resulted in a significant reduction in the variability of

the product quality in both examples.  A more recent

paper [1] also uses a model predictive score

controller built on top of an existing plant control

system.  An advantage of such an architecture is that

it can be turned off and then the system reverts to that

which was originally present.  In [7] the score control

was used in addition to a feedback quality controller

that employed a composition analyzer.  In the more

recent paper [1] a score based approach that does not

require an online analyzer was presented.  The

method, which is outlined below, was applied to the

Tennessee Eastman process and it resulted in a

significant reduction in product quality variability,

namely 44%.  The disturbance considered was a

stationary upset, labeled IDV(8) in [9].  However,

when score control is used and step upsets occur,

poor transients result.  An approach to overcome this

problem is the focus of this paper, and it is discussed

after a review of the results in [1] is given.

2. REVIEW OF MODEL PREDICTIVE CONTROL

IN THE SCORE SPACE

In the earlier approach [1] it is assumed that the plant

is running under an existing control system and that it

is subjected to stationary stochastic disturbances.

Since the process operation is stationary, no net steady

state adjustment is made to the manipulated setpoints.

In the methodology the disturbances do not have to be

measured directly.  Rather the effect of the disturbance

is inferred through the use of existing measurements.

To reduce the product variations the following steps

are carried out:

Step 1.  A group of real time measurements, x(t),

and a group of setpoints to be manipulated, s(t), are

selected.

Step 2.  PRBS forcing is used on the setpoints to

develop a database for modeling the process

dynamics.  The variation in the measurements is

caused both by the unmeasured stochastic

disturbances as well as by the PRBS forcing that is

used to generate the database.

Step 3.  The process measurements are compressed

to scores using PCA.

Step 4.  Orthogonal PCA [10] is used to focus on

that part of the score space, z,  that can be affected

by manipulating the chosen setpoints.

Step 5.  A dynamic model is fitted to the z,s data.

Step. 6  Model predictive control is used to

calculate changes in s to force the predicted values

of z to the origin.  A key aspect of the formulation

is the incorporation of a constraint that forces the

sum of the changes in s to be zero.  This constraint

is used since it is assumed that the disturbance that

is causing the process to move is a stationary

disturbance.  Thus, no net change in the setpoints is

required.

This approach has been applied successfully to the

Tennessee Eastman process, a detailed description of

which is given in reference [9].  The process involves

the production of two products, G and H, from four

reactants, A, C, D, and E.  In addition, there are two

side reactions that occur and an inert, B, essentially all

of which enters with one of the feed streams.  A

process diagram for the Tennessee Eastman process is

shown in Fig. 1., including the control system that is

being used to run the plant.  The tuning parameters for

the various loops shown are given [1].  In the original

problem statement, an analyzer was used to measure

the composition of the product stream.  For the model

predictive score controller it is assumed that this

composition is not available online, but rather that it is

measured offline in a laboratory.  The product

composition control objective is to maintain the G/H

ratio in the product stream constant.  As discussed by

Mc Avoy and Ye [11], the ratio of the D and E feeds

can be used to control the G/H ratio in the product.

Since an online analyzer is not being used a fixed

value for the D/E ratio of .813 is employed as a base

case.  The disturbance that was considered in [1] was a

random change in the composition of the C feed,

labeled IDV(8) in [9].  The response of the G/H ratio

to IDV(8) resulting from the existing control system is

shown in Fig. 2 as the dotted line.  A 3-day period is



simulated and for purposes of clarity only the

responses for the first 24 hours are shown in Fig. 2.

The remainder of the transients shows the same trends.

Over the 3-day period the G/H ratio oscillates around a

steady state value of 1.226, and it ranges from 1.167 to

1.280.  The standard deviation of the G/H response is

a measure of the product variability and its value over

the 3 days is .0229.  A model predictive control

approach was used to reduce this standard deviation

without using either a product analyzer or measuring

the disturbance.  The model predictive results are also

shown in Fig. 2 where it can be seen that a significant

reduction the product variability is achieved.  How

these results are produced is discussed next.

When score control was used, 5 process measurements

were selected for feedback, and the D feed was

manipulated.  The measurements used were: A feed

flow, reactor pressure, reactor temperature, separator

level, and separator pressure.  These measurements

have 3 key characteristics in common.  First, they are

affected by the random upset in the C feed.  Second,

their response tends to lead the response of the G/H

ratio in the product.  Lastly, these variables are

affected by the manipulated D feed setpoint.  To

develop a dynamic score model, a PRBS signal of ±

1% (±36.56 kg/h) was added to the D feed setpoint for

a period of 10 hrs.  During this period the random

disturbance in the C feed also occurs.  It can be noted

that the variance of the change in the D feed was

larger than that resulting from the PRBS forcing alone

since the D/E ratio contributes to changing the D feed

setpoint as well.  The E feed responds to the random

upset since it is used for reactor level control.  The E

feed then affects the D feed set point through the

constant D/E ratio.  A sampling time of 5 mins. was

used.  The 5 measurements as well as the D feed

setpoint measurement were scaled to zero mean and

unit variance.  The 5 measurements were reduced to 2

scores using PCA, and the 2 scores explain 88.3 % of

the variance in the 5 measurements.  The scores were

transformed into a scalar variable that can be affected

by the D setpoint, z.  Then the MATLAB

Identification Toolbox [12] was used to develop a

dynamic model between the D feed setpoint and z.  A

third order ARX model was identified using the

instrumental variable option in the Identification

Toolbox.  Additional details are given in [1].

Next, model predictive control was implemented, and

the results achieved by this controller are also shown

in Fig. 2.  As can be seen the G/H ratio oscillates

around a steady state value of 1.226.  The maximum

G/H value is 1.260 and the minimum is 1.195 over the

3 days simulated.  The standard deviation of the G/H

response is .0128 over the 3 days, which is a reduction

in the product quality variability of 44% compared to

the constant D/E policy.  This result is excellent and it

is achieved by using measurements that are already

available.  It can be noted that the MPC tuning

parameters used were not optimized.  Thus, even

better performance might be achievable through

optimization of these tuning parameters.  Although the

results shown in Fig. 2 are encouraging, the algorithm

has a problem if non-stationary step upsets occur.

After discussing the problem, and approach to

overcoming it is presented.

3. HANDLING STEP UPSETS

A key assumption that is made in formulating the

model predictive score control is that the stochastic

disturbances encountered are stationary in nature.  If a

step disturbance enters the process, then continued use

of the model predictive SPC controller can cause

problems.  Figure 3 shows the responses produced by

the SPC controller compared to a controller that uses a

fixed D/E ratio when a step disturbance occurs in the

composition of the C feed stream in addition to the

random IDV(8) disturbance.  The step disturbance is

labeled IDV(1) in [9].  The step upset results in the

plant being brought to a new, non-zero steady state

operating point in terms of the z score variable.  When

the model predictive SPC controller tries to bring the

process back to zsp=0., its action results in a very slow

transient in G/H compared to the constant D/E

controller.  As can be seen in Fig. 3 the dynamic score

controller does reduce the variability of the G/H ratio

significantly, but the desired G/H setpoint of 1.226 is

not achieved.  Table 1 gives G/H results averaged over

500 minute intervals.  The score controller produces

an average G/H ratio of 1.193 even during the period

from 1000 to 2500 minutes.  By contrast the constant

D/E policy produces a G/H value that is much closer

to setpoint, 1.226, during the same period.  In order to

bring G/H back to setpoint it is necessary to change

the D/E ratio setpoint when the score controller is

used, and a steady state approach to this calculation is

discussed next.

To overcome the problem a steady state MPC

controller is used on top of the dynamic score

controller to change the D/E ratio every time a lab

assay is obtained.  The steady state controller is



calculated by solving the following optimization

problem:

     (1)

where ( ˆ / )g h  is a deviation between the predicted

value of G/H and 1.226, ∆( / )g h k  is the deviation

between the measured G/H value at time k and 1.226,

∆( / )d e k  is the difference between the deviation

variable ( / )d e ≡(D/E-.813) at time k and the same

variable at time k-1, and w is a scalar weight.  For the

Tennessee Eastman process the stoichiometry is such

that 1 mole of G is produced by 1 mole of D and 1

mole of H is produced by 1 mole of E.  Thus, the

deviation in G/H, g/h, can be modeled as directly

proportional to the deviation in D/E, d/e and the

proportionality constant, m, can be calculated from

the steady state values of G/H and D/E as 1.50.

Equation 1 can be solved analytically to give:

     (2)

Figure 4 shows the responses produced by the addition

of the steady state G/H controller on top of the SPC

controller.  For Fig. 4 the disturbances used are

IDV(1) plus IDV(8), and w is 2.  It is assumed that

G/H is measured every 8 hours and the sample used is

a composite 8 hour sample which results in the

average value of G/H over the time period being

determined.  As can be seen the addition of the steady

state controller improves the response of the SPC

controller, which in turn reduces the variability of the

product quality.  Table 2 gives G/H results averaged

over 500 minute intervals for the constant D/E and

steady state D/E plus score controllers.  The addition

of the steady state D/E controller produces an average

G/H ratio of ~1.232 during the period from 1000 to

2500 minutes, which a significant improvement

compared to using just the score controller.  A

comparison of Figs. 3 and 4 shows that the score

controller with the steady state adjustment greatly

reduces the variability in the product G/H ratio

compared to the constant D/E approach.  It takes the

steady state controller approximately 16 hours to

eliminate the effect of the IDV(1) step upset.  From

1000 min. to 2500 mins. the standard deviation of G/H

produced by the constant D/E controller is .022, while

the proposed approach produces a standard deviation

of .0124, which is a 43% reduction in variability.

Figure 5 shows how the D/E setpoint is manipulated

by the steady state controller to achieve the results

shown in Fig. 4.  It is straightforward to show that

using d/e given by eqn. 2 results in no steady state

offset in g/h.  Equation 2 shows that ∆(d/e)|k only

equals 0. when ∆(g/h)|k is 0, which happens when the

measured G/H value is at setpoint.  The Tennessee

Eastman example which is used here for illustration

involves only a single manipulated variable.  It is

straightforward to use a multivariable approach in

which several setpoints are manipulated.  It is also

straightforward to extend eqn. 1 so that optimum

values can be calculated for all the manipulated

setpoints so that step upsets can be handled

effectively.

4. CONCLUSIONS

This paper has presented a steady state approach to

adjusting setpoints for a recently published model

predictive SPC controller.  The model predictive SPC

controller reduces product quality variability for

stationary stochastic upsets, but it has a problem when

step upsets occur.  It has been shown that the addition

of the steady state controller overcomes the problem

caused by step upsets.  The approach has been

illustrated on the Tennessee Eastman testbed process.
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Table 1.  Comparison of Constant D/E and Score Controllers for IDV(1) + IDV(8)

Time Period min. Constant D/E Policy Score Controller

0 - 500 1.211 1.188

501 - 1000 1.231 1.173

1001 - 1500 1.224 1.193

1501 - 2000 1.223 1.193

2001 - 2500 1.230 1.193

Table 2.  Comparison of Constant D/E and Score + Steady State MPC Controllers for IDV(1) + IDV(8)

Time Period min. Constant D/E Policy Score Controller with
Steady State Update

0 - 500 1.211 1.188

501 - 1000 1.231 1.190

1001 - 1500 1.224 1.232

1501 - 2000 1.223 1.235

2001 - 2500 1.230 1.228



Figure 1.  Schematic of Tennessee Eastman Process

              
Figure 2.  Comparison of Constant D/E policy and Model     Figure 3. Plot of G/H ratio in Product

Predictive Score Control      for IDV(1) + IDV(8)

                 
Fig. 4. Plot of G/H ratio in Product for IDV(1) + IDV(8)         Fig. 5. Plot of D/E ratio for Score + SS MPC
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