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Abstract: Stability in presence of (possibly varying) time-delays in a control
loop consisting of a continuous-time plant and a discrete-time controller is
studied. A simple stability criterion is developed, consisting of a graphical test
in a Bode plot of the closed loop system. The graphical test makes it very easy
to design the controller for time-delay robustness.
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1. INTRODUCTION

This paper considers the problem of time-
varying delays in a linear control system with
a continuous-time stable plant and a discrete-
time controller.

Time-delay robustness is a large research
topic, and many sub-problems have been ex-
tensively explored. One such problem is “sta-
bility independent of delay”, where the sys-
tem stability is tested for any delay, see
(Chen and Latchman (1995); Huang and
Zhou (2000); Verriest et al. (1993)). Another
problem is “delay-dependent stability” (imply-
ing restrictions on the delays), which has been
explored in (Yan (2001); Verriest (1994); Gu and
Han (2000); Li and de Souza (1997)) among oth-
ers. All these references have used continuous-
time systems only. In this paper, the focus is
on the interconnection of continuous-time and
discrete-time systems, as this is the common
case in real-world systems (with continuous-
time plant and discrete-time controller). This
kind of problem has been studied before, see
e.g. (Nilsson et al. (1998)), but often the proba-
bility densities of the delays are assumed to be
known.

In this paper, delays are time-varying, stochas-
tically or worst-case, and bounded. The main
advantage of the method is that the stability
criterion is a simple graphical check in a closed

loop Bode plot, which makes it easy to design
for robustness.

All sampled-data theory in this paper is known,
and the papers main contribution is to apply it
to the highly relevant control problem of delay
stability. The result, thanks to its simplicity, is
very usable in practice.

2. PROBLEM FORMULATION

Consider the control system in Figure 1. The
plant P(s) is a continuous-time stable strictly
proper linear system, and the controller C(z)
is a discrete-time linear system with sample
period h. Discretizing the plant P(s)with a zero-
order-hold input gives P̃(z). The time delay τ (n)
for the system for sample n may be stochastic,
but must be bounded:

0 ≤ τ (n) < Nh, (1)

where N is a positive integer. A simple put
powerful criterion for stability of the closed loop
system for all delays fulfilling (1) (including
stochastic or worst-case time-varying) will be
shown.

3. STABILITY FOR SHORT DELAYS

For clarity of the presentation, the case where
N = 1 will be shown first, and then extended to
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Fig. 1 The control system with delay after the controller.
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Fig. 2 An equivalent description of the control loop with
delay.

longer delays.

The output of the controller is denoted u(n),
where n is the time step. The output from the
delay is (for N = 1)

udel(t) =
{

u(n− 1) tn ≤ t < tn + τ (n)
u(n) tn + τ (n) ≤ t < tn+1.

(2)
Therefore, it can be rewritten as

udel(t) = u(n) + uerr(t) =
u(n) +

(
−u(n) + u(n− 1)

)
∆(t) (3)

where

∆(t) =
{

1 tn ≤ t < tn + τ (n)
0 tn + τ (n) ≤ t < tn+1.

(4)

The operator ∆ is defined by ∆ f = ∆(t) ⋅ f (t).
Note that the L2-induced gain of ∆, γ (∆) ≤ 1.
The system in Figure 1 can now be transformed
via Figure 2 to the standard feedback in Figure
3.

As the upper part of the loop in Figure 3
consists of both discrete-time and continuous-
time linear elements, the resulting transfer
function Ψ is linear and time-periodic. The
H∞ gain of Ψ will now be calculated. For
the intuition, a frequency domain calculation
is preferable. Such a result is presented in
(Yamamoto and Araki (1994)). It is shown that
(in notation from (Lindgärde (1999)))

iΨi∞ = sup
ω∈(−ωh/2,ωh/2]

iΨ(ω)i, (5)
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Fig. 3 The control loop and ∆ function rewritten on
standard feedback form. G(z) = C(z)

1−P̃(z)C(z) .

where

iΨ(ω)i = sup
iūi=1

iyiP

iuiP
, (6)

in which

u =
∞∑

k=−∞
ukei(ω+kωh)t (7)

ū =

 . . . u−1 u0 u1 . . .


 (8)

i ⋅ iP = lim
τ→∞

√
1
2τ

∫ τ

−τ
i ⋅ (t)i2dt (9)

A general formula for iΨ(ω)i is pre-
sented in (Yamamoto and Araki (1994);
Lindgärde (1999)), but in this case, it simplifies
significantly to

iΨ(ω)i = i − eiω h + 1i︸ ︷︷ ︸
B1(ω)

⋅iG(eiω h)i⋅

√√√√
∞∑

k=−∞
iP(i(ω + kω h))i2

︸ ︷︷ ︸
Palias (ω)

, (10)

where G(z) = C(z)
1−P̃(z)C(z). See Appendix for de-

tails. The aliasing sum of P converges since P
is strictly proper. Note that Palias(ω) is close to
P̃(eiω h) if the sample rate h is chosen well.

It should be noted that the above infinite sums
are easily numerically approximated, but there
is also an algebraic calculation presented in
(Braslavsky et al. (1998)).

3.1 A Stability Criterion
To prove closed-loop stability of the control sys-
tem in Figure 3 using the Small Gain Theorem,

γ (∆)γ (Ψ) < 1 (11)

is required, which is true if

iΨ(ω)i < 1, ∀ω (12)



due to (5) and that γ (∆) ≤ 1. Thus

iΨ(ω)i = iB1(ω)G(eiω h)Palias(ω)i < 1 <

iG(eiω h)Palias(ω)︸ ︷︷ ︸
T ∗(ω)

i < 1
B1(ω)

(13)

is a sufficient condition for stability. This can
easily be checked in a Bode diagram, where also
a “stability margin” can be obtained from the
minimum distance from iT∗(ω)i to 1

B1(ω) . See
Figure 4 for an example.

3.2 Some Approximate Stability Criteria
If the P(s) is sampled with a high enough
sampling rate,

T∗(iω) � P̃(eiω h)C(eiω h)
1− P̃(eiω h)C(eiω h)

= T(eiω h),

where T is the complementary sensitivity func-
tion. Thus, (13) can be approximately checked
in the standard closed loop Bode diagram.

To simplify matters further, (13) can also be
tested approximately by studying only using one
(well chosen) frequency point. First, the closed-
loop bandwidth of the control system is defined
as the largest frequency ω b ≤ π

h which satisfies

iT(eiωbh)i = 1√
2

. (14)

If T has a roll-off of 1 and does not have any
resonance peaks, the comparison (13) can be
done in the point ω = ω b.

iT(eiωbh)i = 1√
2
< i 1

−eiωbh + 1
i < ω bh < π

2
(15)

By designing the control system so that (15)
holds with some margin, no delay less than
one sample-period (stochastic or constant) can
destabilize the system. This stability criterion
is rather weak, due to the roll-off one and no
resonance assumptions.

A better approximate criterion is the following:
Define ω c as the frequency point (if unique)
where iP̃(eiω ch)C(eiω ch)i = 1, and note that this
point usually gives the approximate resonance
peak of T . Then

iT(eiω ch)i = 1
i − 1− ei(π−ϕm)i =

1
i1− eiϕmi ,

(16)
where ϕ m is the phase-margin of the system.
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Fig. 4 A DVD focus loop with two different PID con-
trollers. The upper loop can be destabilized by delays
within a sample period, whereas the lower is guaran-
teed to be stable for delays within two sample periods.
Note the similarity of T and T∗ , as the aliasing does
not change much.

The comparison in point ω = ω c becomes

iT(eiω ch)i < 1
B1(ω c)

<

1
i1− eiϕmi <

1
i1− eiω chi <

ϕ m > ω ch (17)

Note that this approximate criterion is the same
as the exact stability criterion for a stable sys-
tem with a fixed delay h (which is an allowed
delay in this criterion!). From this some conclu-
sions can be drawn:

a) (13) is not very conservative.

b) For stability issues, stochastic delays are
not much worse than fixed. This does of
course not account for delay compensation,
etcetera.

3.3 Comparisons to Other Criteria
One other way to treat the delay is to split it
up in direct feed-through and error (just like in



this case), but write it as

Udel(s) = e−sDU = U + (e−sD − 1)U︸ ︷︷ ︸
Delay error

(18)

where D is the delay which changes once per
sample. The maximum gain of (e−sD − 1) is 2.
Therefore, it is required require that

G(eiω h)Palias(ω) <
1
2

∀ω , (19)

meaning that the (approximate) complemen-
tary sensitivity function has to be low for all fre-
quencies. The difference between (19) and (13)
is the high pass filter leading to the i 1

−eiω h+1i
bound. This filter does also have a H∞ gain of
2, but it is only achieved for high frequencies.
Using (13) the complementary sensitivity may
be high at lower frequencies.

4. STABILITY FOR LONGER DELAYS

This section presents a generalization of the
stability criterion for any N. No other structure
to the delays is required than (1), which means
that the output of the delay is

udel(t) = δ (t)T




u(n)
u(n− 1)

...
u(n− N)




, (20)

where δ (t) is a “selector function” – for each
time t, one element of δ (t) is 1 and the others
are zero. Since it models a delay, it is piecewise
constant with at most N switches per sample
period. The delay can then, again, be rewritten
as feed-through plus error:

udel(t) = u(n) + ∆(t)T




u(n) − u(n− 1)
...

u(n) − u(n− N)




,

(21)
where ∆(t) is the selector function which may be
all zero for some time. Naturally, the L2-induced
gain γ (∆) ≤ 1. The same reasoning as for N = 1
can now be used, with the difference that Ψ(ω)
is SIMO and ∆ is MISO. The gain of Ψ now
becomes

iΨ(ω)i =

∥∥∥∥∥∥∥




−eiω h + 1
...

−eNiω h + 1




∥∥∥∥∥∥∥
︸ ︷︷ ︸

BN (ω)

iG(eiω h)iPalias(ω)︸ ︷︷ ︸
T ∗(ω)

(22)
and the stability criterion (γ (Ψ) < 1)

T∗(ω) < 1
BN(ω)

∀ω (23)
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Fig. 5 The Bode plot for the DVD focus process (sampled
and continuous). Note that the time scale is changed
by a factor of 1000.

4.1 Approximate criteria, again
The approximate criterion (17) extends to

ϕ m > ω cNh, (24)

which, again, is the same as for a constant delay
of Nh.

5. EXAMPLE

In this section, a real-world process is pre-
sented, for which the criterion can be used to
check robustness to delays. The process is the
focus lens system of a DVD player. As a DVD
rotates in the player, the laser spot has to be
kept in focus on the DVD surface. Therefore a
tight control loop detecting the focus error and
moving the lens has to be closed. A Bode plot
of the transfer function from control signal to
focus error is shown in Figure 5.

The process is sampled at 50 kHz, and it is
controlled by a digital PID controller. For the
example two parameter settings for the PID
have been used: Controller C1 has a high gain
and gives the control loop a high bandwidth.
Controller C2 is C1 but with a lower gain.
The complementary sensitivity functions for the
system with the two different controllers can be
seen in Figure 4.

Apparently, using C1 (upper part of the figure)
stability of the system cannot be guaranteed
even for delays τ (n) ≤ h. With some process
and sample noise, the variance of the system
can indeed be shown to go to infinity for delays
close to h.

Using C2 (lower part), the system is guaranteed
to be stable for delays τ < 2h. Again, for slightly
longer delays (with τ < 3h), and some process
noise, the variance goes to infinity.

Note, that even if the system can be destabilized
when the criterion is not fulfilled in this case,
the result is not strict.



6. CONCLUSIONS

A simple stability criterion in a digital control
system with delays has been shown. The crite-
rion can be checked in a Bode plot. An approx-
imate version of the criterion effectively puts a
bound on the phase margin of the system.
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A. CALCULATION OF Ψ GAIN

Consider a linear system Ψ consisting of a
strictly proper continuous-time part P(s), a
sampler, a discrete-time part SIMO GN (z), and
a (diagonal) zero order hold Z(s). The gain
iΨ(ω)i is calculated as (from (Yamamoto and
Araki (1994)))

iΨ(ω)i = lim
k→∞

σ̄ (ψ k(iω)), (25)

where

ψ k(iω) =




1
h Z(iω + kiω h)

1
h Z(iω + (k− 1)iω h)

...
1
h Z(iω − kiω h)




︸ ︷︷ ︸
Zk(ω)

GN(eiω h)⋅


P(iω + kiω h) . . . P(iω − kiω h)




︸ ︷︷ ︸
Pk(ω)

. (26)

As ψ k(iω) has at most rank 1, the maximum
singular value is simply

σ̄ (ψ k(iω)) = iZk(ω)GN (eiω h)i ⋅ iPk(ω)i (27)
Z(s) is a zero-order-hold, such that Z(s) =
diag

{
1−e−sh

s , 1−e−sh

s , . . .
}

, and thus it holds that

lim
k→∞

iZk(ω)GN (eiω h)i =

lim
k→∞

∥∥∥∥∥∥∥∥∥∥∥∥




1−e−i(ω+kω h)h

i(ω+kωh)h GN (eiω h)
1−e−i(ω+(k−1)ω h )h

i(ω+(k−1)ωh)h GN (eiω h)
...

1−e−i(ω−kω h)h

i(ω−kωh)h GN (eiω h)




∥∥∥∥∥∥∥∥∥∥∥∥

=

lim
k→∞

√√√√
k∑

n=−k

∣∣∣∣
1− e−i(ω+nωh)h

i(ω + nω h)h

∣∣∣∣
2

⋅ iGN (eiω h)i =

iGN (eiω h)i (28)
and thus (as the sums converge)

iΨ(ω)i = iGN (eiω h)i lim
k→∞

iPk(ω)i. (29)

In this case, GN(z) is the closed loop G(z) and
N difference filters

GN (z) =




−z1+1
z1

...
−zN+1

zN




G(z). (30)

This gives (10) and (22).


