Copyright © 2002 IFAC

15th Triennial World Congress, Barcelona, Spain

ANALYSIS AND CRONE CONTROL OF TIME VARYING SYSTEMS WITH ASYMPTOTICALLY
CONSTANT COEFFICIENTS

SABATIER Jocelyn, GARCIA ITURRICHA Aitor, OUSTALOUP Alain

LAP - ENSEIRB - Université Bordeaux 1 - Equipe CRONE — UMR 5131 CNRS
351, Cours de la Libération, 33405 Talence
Tel : +33 (0)556 846 607 Fax: +33 (0)556 846 644
sabatier@lap.u-bordeaux.fr www.lap.u-bordeaux.fr

Abstract: Continuous time varying systems with asymptotically constant coefficients are
analysed in the frequency domain through their representation using time varying frequency
responses. A stability theorem for feedback systems including time varying systems with
asymptotically constant coefficients is proposed. Finally, Crone control (robust control
method based on fractional differentiation) is extended to robust control of time varying
systems with asymptotically constant coefficients.
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1. INTRODUCTION to a state space representation of the considered systems
with a constant state matrix (Lyapunov transformation).
Transfer functions and associated frequency responsed)sing this transformation, section 4 explains how to
are powerful tools for the analysis and synthesis of compute a TVFR representation for time varying
stationary systems. Thus, several authors have extendedystems with asymptotically constant coefficients. Also,
these tools to treat time varying systems. In particular, the representation of feedback systems using TVFRs is
Zadeh defined the system function notion (Zadeh, 1950) studied. Section 5 gives some rules for the truncation of
to which the time varying frequency response (TVFR) TVFR infinite series when numerical implementations
can be associated. are required. In section 6, a frequency stability criterion
is proposed for feedback systems including time varying
Many aspects of the definition of TVFRs correspond to systems with asymptotically constant coefficients.
the definition of stationary equivalents. However there Third generation Crone control is extended in section 7
has been little interest in TVFRs since Zadeh. The majorto the control of time varying systems with
reason is the difficulty to calculate the TVFR asymptotically constant coefficients.

representing a general time varying system. This extension leads to the synthesis of controllers which
ensure :

However, for some classes of systems, TVFR - a near stationary behaviour of the closed loop

computation procedures have been developed (Sabatier system;

et al., 1998; Sabatier and Garcia, 2000; Rudnitskii, - performances set by the designer such as rapidity

1960). In this study, TVFRs are used for the analysis and  and the resonance ratio in tracking of the closed loop

robust control of a particular class of time varying system.

systems : time varying systems with asymptotically

constant coefficients (Bellman, 1953; Kaplan, 1962). Whenever the plant is reparametrated, these controllers
also ensure :

In this paper, section 2 defines considered systems. -robust closed loop stability and performance ;

Section 3 gives an algebraic transformation which leads



- satisfactory immunity of the closed loop to the time
varying character of the plant.
In section 8, the extension of Crone control is applied to
an example,

2. SYSTEMS STUDIED

The systems studied in this paper admit the following
state space description :

e o

with x(t) OR™, u(t) O R and y(t) O R.
Matrices A(t), B(t) and C(t) are supposed continuous and
bounded on R*. They respect the following relations :

limAlt)=A,, limB(t)=8B,, limcC(t)=C., (2)
too too t-o
where Ac, B¢ and C¢ aretime invariant matrices.

It is supposed that matrices A(t), B(t) and C(t) admit the
series expansions:

Al)= Y Ae™ ™, B(t)= Y. Be™ ™, ct)= Y. ce™
kON kON kON
©)
where A, OR™", B, OR™, ¢, OR™", IkON and

where o OR,. Indeed, reation (3) ae Taylor

expansions of matrices A(¢), B(Q) and C(Q) if ¢ =€
with ¢ 01[0..1] (Sansone, 1959). Matrices A(¢), B(¢) and
C(¢) arethusanalytic on [0..1].

In the present study, matrix A(t) is supposed to respect
the following hypothesis.

Hypothesis 1

Let Ay ={g =A —ka,iO[1...n]} be the eigenvalue
sat of matrix Agtakl,, OkON. Sets Ay respect the
following condition: Ay, n Ay, =0 if k; #k;.

O

3. ALGEBRAIC TRANSFORMATION

Using ¢ =e™ ™ and thus dJ =-addt, state space
description (1) becomes :

—az%f) = { szk}x(z){ > Bka}U(Z)
kON kON

@)
y(z):[zckzk]x(z)
KON

If hypothesis 1 ismet, variable change:
x(¢)=P(¢)z¢) with P(¢)= k%:NPka , PO)=1, (5
reduces representation (4) to (Wascow, 1976) :

~a¢ )= noale)eBlenie)

y(¢)=C(2)x(¢)
(6)

B(¢)= Y B B()=P(¢)B()
KON

C(¢)= Y. Ce® cle)=clo)r(2).
kON

Matrix P(¢) isthe solution of equation (Wascow, 1976)
ac P e ple) P

4. TIME VARYING FREQUENCY RESPONSE
REPRESENTATION

4.1. Definitions

In the 1950s, Zadeh (Zadeh, 1950) demonstrated that
linear time varying systems can be described by system
functions H(s, t). These system functions are linked to
the impulse response of the system, h(t, ), a function of
the time variable t and of the moment of application of
theimpulse &, by :

H(st)=es ofh(t,{)esf dé , (8)

if h(t, & ispiecewiseconstant Ot> & andif 0. O R
suchthat lim e%th, &)=0

t-7 -
IfOt>t> &/ |h(t,é)|<e? oOR OE0R, L OR,
system function notion previously introduced lead to the
TVFR notion, denoted H(jeyt) and obtained using
s=ja If ult)=e'“, the TVFR of system (1) can aso be
defined by (Zadeh, 1950) :

Responseof the systemto e/

H(jwt)= N NC)

4.2. TVFR of a time varying system with asymptotically
constant coefficients

For time varying systems with asymptotically constant
coefficients, if u(t) = €“, then, output y(t) is given, using
relation (6) and if initial conditions are supposed equal to
0, by:

y(t):é(t)x(t):é(t)_[; eft-B(elergr . (10)

Relation (10) demonstrates that the state x(t) of the
systemiis:

x(t)=X(jwt)e!® = > X (joje ™Ml ,  (11)
KON

and that the TVFR of the system admits the following
series expansion :

H(jowt)= Y H(jo)e™ . (12)
kON
Using relations (11) and (12) in equation (1), then
regrouping terms in € ® (which form an orthogonal
basis), it is possible to express frequency responses
Hi(j ) which appear in function H(ja t) (relation (12)).



Theorem 1

Frequency responses Hg(ja) of relation (12) are given
by :
k
Hi(iw)= Y Ce X (jw), (13)
1=0
with

x.(jw):[(jw—m)un—ﬁo]-l[a—'ic._ixi(jw)] (14
i=0
and

Xoljw)=[jaty - A "By, (15)
if and only if det|(je-la)l,-A)]#0 DOION and

DwOR" .
O
Proof : See comments of section 4.2

4.3. Feedback system case

The standard control scheme of Fig. 1 is considered, in
which time varying systems with asymptotically constant
coefficients ¢ and 2 can be described by TVFRs
C(jaw t) and P(jay t) with :

Cliwt) = Y Ck(jwe ™ and
KON
P(jwt)= Y R(jw)e ™. (16)

kON

Let B(jw t) be the TVFR of the system resulting from
the cascade connection of systems ¢ and 7, with :

Bliwt) = T Bc(jw)e™ ™. (17)
KON

Theorem 2

Frequency responses S(ja) of reation (17) are given
by :
k

Bliw)=Y C(jw)Pi(jw-ia). (18)

i=0
O

Proof : Compute the output of ¢ and 7 using relation
(9) if the input of €is &t)=€“ . Then by identification,

find frequency responses A(j &).
Pu( @) (2]
R(jw)_'_ : 6’ % uGe : +% Y(
L—" N
N P
o pen(d)

Fig.1. Feedback sysem

Let Tl t), Sjw t), CYjaw t) and PYjew t) denote
respectively TVFRs connecting (see Fig. 1) :

- reference input r(t) to output y(t) ;
- output disturbance py(t) to output y(t) ;

- reference input r(t) to input u(t) ;
- plant input disturbance py(t) to output y(t).

As the feedback system of Fig. 1 being a time varying
systems with asymptotically to constant coefficients,
TVFR T(jw t) is of theform :

T(jwt)= Y T(jw)e™ ", (19)
kON

where frequency responses Ti(jo) are given by the
theorem 3.

Theorem 3

Frequency responses Ty(ja) of relation (19) are given
by :

i)~ ST (i) (0-1a)

Tk(jw): 1+,80(ja)—ka) (20)

and
Toliwk Bolia)/ i+ Aolie)) (21)
if and only if 1+ fy(je—ka)#20 OkON and DwOR' .
g

Proof : Compute the output of % using relation (9) if the
input of 7 is r(t)=€“ . Then by identification, find
frequency responses Ty(j ).

Similar theorems for the other TVFRs (Sja t), PSja t)
and CS(jaw t)) can be established in the same way
(Garcia, 2001).

5. NUMERICAL TREATMENTS

TVFRs of time varying systems with asymptotically
constant coefficients admit infinite series expansions that
must be truncated at an order N for a numerica
application. Given the recursive form of relations
relations (13), (14), (18), (20) which defines frequency
responses Hija), A, Tdia), (but aso CS(ja),
S(ja), PS(ja and C(ja)), and given the convergence
of these relations, (for proof see (Garcia, 2001), and
(Wascow, 1976) for an example of proof) the truncation
problem can be easily solved. Indeed, relation (13), (14),
(18) and (20) can be computed until the modulus of
frequency responses Hi(jad, Gdiad, Ti(a (but also
CS( @, (i), PS(jo and C(jc)), k> N, isless than a
fixed real number &

6. FREQUENCY STABILITY CONDITION

This paragraph gives a criterion which permit to check
the sability of the feedback system of Fig. 1. To
establish this criterion, the following property must first
be given.

Property 1

If T(jea t) denotes the TVFR of the feedback system of
Fig. 1, and if {p;,---, pm} denotes the set of poles of
trangmittance Ty(s), then poles of transmittance Ty(s) are
elements of the union of sets {p; +ia, -, py, +ia} with
ig[o,---Kk|.

O



Proof : Supposethat {p;.---, pm} denotes the set of poles
of transmittance Ty(s), then use relation (20).

If it is taken that transmittance To(S) has my real poles
and mg pair of complex conjugate poles (where g and g
are respectively the real part and the imaginary part of
pole p), then, using property 1, Ty(s) is:

Wk A
T (s)= '
k(s) EE)S la-p *
m k Bi’|S+Ci’|
EE) s 25(p; +1a) 41
(pi +I0/)2+(7i2 (pi+la)2+ai2
(22)

Given that the output of the system characterised by
TVFR T(ja t) is (Zadeh, 1950):

W)= 3 Lt TrliaR(ok 0, (@9
kOry 7T “o

the feedback system of Fig. 1 (system 77: r(t) - y(t)) is
thus exponentially stable if the real part of poles of Ty(s)
is less than ka, or given property 1, if the Ty(s) has only
negative real part poles. Given that analogous conditions
for TVFRs Sjw t), PYjawt) and CSjw t) can be
established, the following theorem can be given.

Theorem 4

Feedback system of Fig. 1 is exponentialy stable if and
only if transmittance To(s) has only negative rea part
poles or equivalently given relation (21), if trangmittance
So(S) respect the Nyquist criterion.

O

Proof : see comments above

7. CRONE CONTROL OF TIME VARYING
SYSTEMSWITH ASYMPTOTICALLY CONSTANT
COEFFICIENTS

7.1. Objectives

To extend Crone control to the control of time varying
plants with asymptotically constant coefficients, an open
loop behaviour for the nominal parametric state of the
plant isrequired which :

- ensures a near dationary behaviour of the closed
loop system (not perfectly stationary due to the
truncation of TVFR of the controller) ;

- ensures performances set by the designer such as
rapidity and the resonance ratio in tracking of the
closed loop system ;

- takes into account the behaviour of the plant at the
low and the high frequencies to ensure satisfactory
accuracy of steady state, and immunity of the plant
input to measurement noise.

Whenever the plant is reparametrated, namely if the
plant 7 is dement of the description family [P, this open
loop must also ensure:

- robust closed loop stability and performance ;
- satisfactory immunity of the closed loop to the time
varying character of the plant.

As for the stationary case, the behaviour thus defined can
be described for stable plants, by a transmittance based
on frequency limited complex fractional integration
(Qustaloup et al., 2000) :

N 1+ P 1 P
ﬁ(p)=K[1+—b] “ |
P 1+i :|_+7p
Wp Wy
ipTy"Son(®) 2
p p
1+-P 1+ B
Rd|c,—h @ 1 _(25)
1+£ 1+£ [1+p] h
Wy Ch W,

where

wole g e

K ensures the open loop unit gain frequency ), set by
the designer. oy, @, @ and oy, are transtiond
frequencies. n, 0 N and n, O N are respectively the
asymptotic behaviour ordersin open loop at the low (w <
W) and the high (w > o) frequencies.a O R and b O
R are thereal and imaginary orders of integration. « is
the resonance frequency close to .

7.2. Optimisation of the open loop behaviour

The optimisation of the open loop behaviour consistsin
determining the seven optimal parameters of the nomina
open loop transmittance A(s) :
- optimal real integration order ayy, and optimal gain
Kopt ;
- optimal imaginary integration order by ;
- optimal transitional frequencies yopt, hopts Chopt
and (L,hopt.

The unit gain frequency and the tangency to an iso-
overshoot contour of magnitude Q are chosen by the
designer, so only five independent parameters need to be
considered.

The open loop behaviour which satisfies the objectives
defined in section 7.1 can be computed by solving a
constrained optimisation problem.

The performance criterion and constraints which provide
optimal open loop behaviour respecting the objectives of
section 7.1 thus comprise terms which guarantee :

- robustness of the stability degree of the control

- immunity of the control to the time varying
character of the plant

- the performance objectives set by the designer.

To define the congrained optimisation problem
analyticaly, the gandard control scheme of Fig. 1 is
considered.

Robustness of gability, and immunity to the time varying
character of the plant

In the time domain, the stability degree can be estimated
by the first overshoot of the step response in tracking. In



the frequency domain, if the closed loop is near-
stationary, this first overshoot can be estimated from the
resonance ratio in tracking, Q, deduced from the
frequency response of To(ja). This extension of third
generation Crone control thus ensures the robustness of
the stability degree through :

- the minimisation of the resonance ratio variations of
the dationary part of T(jawt), To(jo), (extreme
variations being characterised by Qmin and Qnax)

- the minimisation of the time varying part of T(ja t)
at reparametration of the plant.

Thislead to the minimisation of the criterion :

J= (Qmax _Q)Z +(Qmin _Q)Z +0 Sup |Tk(ij ' (27)
e

With a judicious choice of weighting coefficient J, the
minimisation of criterion (27) ensures the minimisation
of the resonance ratio variations of To(jo) and the
minimisation of the time varying part of the TVFR
T(aw t).

Performance objectives : shaping of the control loop
TVFRs

Minimisation of criterion (27) sometimes produce
undesirable closed |oop behaviours for one or more plant
2P of the description family P. We thus define how each
function CSja t), S(jea t) and T(j o t) should be shaped
to eliminate these behaviours.

The solicitation level of the plant input is taken into
account through limitation of the TVFR CSjw t),
namely :

sup [CS(jw,t) <CSygm(w)  DwOR*,(28)
POP tOR*

where CSgm(@) is the maximum admissible value of the
modulus of CSja t).

Also, in order to ensure a satisfactory regjection of plant
output disturbances, function S(ja t) is bounded by the
constraint :

sup  [S(je,t) < Sagm(@),
PP tOR™*

OwOR*Y, (29)

where Sym(a) is the maximum admissible value of the
modulus of Sja t).

Finally, in order to cancel the effects of hauling on the
step response in rdation to its value in steady state and
to ensure a satisfactory rejection of measurement noise,
the three following constraints are introduced :

su Tyl jow) <hy, inf Toljw) >h,,
PIZIIP’,O<F2¢)<601| O(Jw] ' PDP10<w<wz| O(J X 2

and (30)

sup [To(jwf<hs MOR, hOR, hOR.
PP,y <w

Optimisation of the open loop behaviour

Given the previous comments, the optimisation of the
open loop behaviour consists in determining the five
optima parameters of the nomina open loop
trangmittance [(s) which minimise criterion (27) and
satisfy the congraints (28), (29) and (30). The
optimisation algorithm is based on the non linear
simplex (Oustaloup and Mathieu, 1999).

7.3 - Optimal controller

The optimal controller is computed by pseudo-inversion
so that the cascade connection of the controller and the
nominal plant can be described by transmittance A @).
The resulting controller can be described by a TVFR
C(ja t) of the form (Garcia, 2001) :

Cliot)=Colie)+ SCj@le™ . (31)
k=1

The synthesis of the controller thus consists in the
approximation of transmittances Cy(s) by transmittances
of theform:

ck(;w):_";kow,i(jw)i _dﬁoak,i(;w)i. @

where degrees n, and dy are set by the designer. Two
techniques can be used to determine coefficients ay,; and
by; of relation (32). The first is a non iterative synthesis
method based on the elementary symmetrical functions
of Vietes roots (Oustaloup and Mathieu, 1999) and the
second is based on the resolution of a linear
programming problem (Oustal oup and Mathieu, 1999).
In general, to dlow the implantation of the C(ja t)
controller, relation (23) mug be truncated.

8. APPLICATION
8.1. Description of the plant
Third generation Crone control is applied to the
synthesis of a robust controller C(jay t) which ensures

stability and a near stationary behaviour to the feedback
system of Fig. 2.

Ri®, |

Y(iw

»
»

Fig. 2. Feedback system

Plant 7 is described for the nominal parametric state of
the plant by the state space description :

EREEG L

with Ag =5, Ay =8 and a=2. Plant Zis submitted to the
parametric variations characterised by :

3<Ay<7, and 5<A<10.  (34)

Using theorem 1, time varying frequency of plant 7 is
given by :



Pliwt)= Y Acjw)e™™ with Ry(9=— :
kCIN s“+Ags+1
(35)

and where frequency responses Py(j ) are defined, if k >
0, by:

AGalio-kaf+ alio-ka)ss) gy
+Ra(jw)A(jw-(k-1)a)=0

The objective of this exampleisto control output y(t).
8.2. Synthesis of the controller

The unit gain frequency is fixed at «, = 30 rd/s for the
nominal behaviour of the plant, and the asymptotic
behaviour orders in open loop at low and a high
frequenciesarefixedatn,=1and n, = 3.

The optimal open loop behaviour which minimises the
criterion

3= (Qmac=23P +(Qmin =23+ ssp [Te(je) ,(37)
e

(weighting coefficient J is chosen equal to 0.5 after a
few trials) isdetermined under constraints

sp  [To(jw) <hy, inf p [To(jw) >hy,
POP,0<w<awy PP, 0<w<w,
and (38)
sup  [To(jw) <hs,
PP, w3<w

with hy =1dB, h, =-1dB, hs=-5dB, ax = 8 rd/s,
w =5rd/sand s =100 rd/s.

This optimisation gives :

a=1258 b=009394, K=3414,
w'p = 1.33rd/s, Wy = 2.66 rd/s,
wy = 66.4rd/s, Wy =132.8rd/s,

and then permits the synthesis of an optimal controller
which hasthe form:

Cljwt) = Cyljw)+Cijw)e™ (39)

where frequency responses Cojed and Ci(jo) are
respectively defined by (given comments of section 7.3):

Coli®)= Bl + (jw)a +1)
and (40)
Cyliw)=(je)Aplic).

Fig. 3 shows the responses of the closed loop with
two extreme parametric states of the plant, to the step
function r(t)=H(t-7) with 7= 0, r=1, 7= 2 and 7= 3
(H(t) denotes the Heaviside function). It aso
demonstrates the efficiency of the synthesis method in
spite of plant uncertainties and the time varying
character of the plant.

9 —Conclusion

In this paper, an extension of Crone control to time
varying systems with asymptotically  constant
coefficientsis given. Thisrobust control method is based
on the computation of an optima open loop behaviour

which minimises the stability degree variations of the
closed loop system as the plant is reparametrated. This
extension is possible through the representation of
considered systems using time varying frequency
responses.

So, frequency methods prove to be very efficient for
robust control of time varying systems. Thus, we aim
now to extend the synthesis method presented in this
paper to other classes of time varying systems using time
varying frequency response representations.

1.4

1.2

Magnitude
o o o
S o o

o
)

-0.2
0

Fig. 3. Closed loop time responses corresponding to the
extreme parametric states of the plant to step inputs
r()=H(t-7),with7=0,7=1, 7=2and 7=3
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