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INTRODUCTION

In this paper we illustrate a method for explicit
approximate motion planning on the linearized
Korteweg-de Vries equation with boundary con-
trol 


Xt + Xxxx + Xx = 0
X(0, t) = X(1, t) = 0

Xx(1, t) = u(t).
(1)

More precisely, given any final time T , any initial
state Ξ0 ∈ L2(0, 1) and any final state ΞT ∈
L2(0, 1), we compute an open-loop control t ∈
[0, T ] �→ u(t) steering the system from Ξ0 to an
arbitrarily small neighborhood of ΞT . In other
words, we prove approximate controllability for
every time T . Though a much stronger math-
ematical result can be found in (Rosier, 1997)
(exact controllability of (1) and of the original
(nonlinear) KdV equation), the interest of our
approach is an explicit construction based on
a “parametrization” of the trajectories of (1).
The idea is reminiscent of flatness (Martin et al.,
1997) and can be seen as a generalization of the
Brunovsky decomposition for finite-dimensional

linear systems. The present point of view, intro-
duced in (Laroche and Martin, 2000), is related
to (Laroche et al., 2000), but the approach is
rather different; in particular, it is not restricted to
all the boundary conditions except the control be-
ing on the same side. It seems applicable to many
linear boundary control problems (Laroche, 2000).

1. PARAMETRIZATION OF TRAJECTORIES
AND MOTION PLANNING

Definition 1. A linear boundary control problem
on [0, 1] × [0, T ] is parametrizable if there exists a
family (αi)i∈N of functions in L2(0, 1), a family
(ai)i∈N of real numbers and a subspace G of
C∞(0, T ) such that:

• ∀y ∈ G, the series

X(x, t) =
∞∑

i=0

αi(x)y(i)(t) (2)

u(t) =
∞∑

i=0

aiy
(i)(t) (3)
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are normally convergent and define a (classi-
cal) solution of the problem on [0, 1] × [0, T ]

• G contains all the polynomials on [0, T ]
• span{αi, i ∈ N} = L2(0, 1).

If the subspace G is big enough, namely con-
tains Gevrey functions of order > 1, such a
parametrization directly yields an explicit solu-
tion to approximate motion planning (provided
the boundary control problem is well-posed),
see (Laroche et al., 2000; Laroche, 2000) for more
details.

Recall that y ∈ C∞(0, T ) is Gevrey of order σ if

∃M,R > 0,∀i ∈ N, sup
t∈[0,T ]

∣∣∣y(i)(t)
∣∣∣ ≤ M

(i!)σ

Ri
.

If γ ≤ 1, y is analytic (entire if γ < 1), hence has
a convergent Taylor expansion around any point.
But if γ > 1, y has around at least one point
a divergent Taylor expansion; the larger σ, the
“more divergent” the expansion. A fundamental
example for motion planning is the “smooth unit
step” defined by Φγ(0) := 0, Φγ(1) := 1 and

Φγ(t) :=

∫ t

0

exp

(
−1(

(1 − t)t
)γ

)
dτ

∫ 1

0

exp

(
−1(

(1 − t)t
)γ

)
dτ

, t ∈]0, 1[.

Whatever γ > 0, Φγ is in C∞(0, 1) and is Gevrey
of order 1 + 1/γ; its Taylor expansion around 0
and 1 is divergent.

Assume now the system is to be steered from the
initial state

∀x ∈ [0, 1], X(x, 0) = Ξ0(x), Ξ0 ∈ L2(0, 1),

to a final state “arbitrarily close” to

∀x ∈ [0, 1], X(x, T ) = ΞT (x), ΞT ∈ L2(0, 1).

Thanks to the density of the αi’s, there exists
given any ε > 0 polynomials

Π0(x) =
n∑

i=0

piαi, pi ∈ R

ΠT (x) =
n∑

i=0

qiαi, qi ∈ R

such that ‖Ξ0 − Π0‖ ≤ ε and ‖ΞT − ΠT ‖ ≤ ε (‖.‖
denotes the usual norm on L2(0, 1)). On the other
hand the function

Y (t) :=
n∑

i=0

pi
ti

i!

(
1 − Φγ

(
t

T

))
+qi

(t − T )i

i!
Φγ

(
t

T

)

is Gevrey of order 1 + 1/γ and satisfies

Y (i)(0) = pi, Y (i)(T ) = qi, i = 0, . . . , n

Y (i)(0) = 0, Y (i)(T ) = 0, i > n.

It can then be shown that the open-loop control

U(t) :=
+∞∑
i=0

aiY
(i)(t), t ∈ [0, T ],

exactly steers the system from Π0 to ΠT . More-
over, any C2 approximate control such that

sup
t∈[0,T ]

∣∣Ū(t) − U(t)
∣∣ +

∣∣∣ ˙¯ (t)U − U̇(t)
∣∣∣ ≤ ε,

in particular the truncated series

Ū(t) :=
N∑

i=0

aiY
(i)(t)

for N large enough, approximately steers the
system from Ξ0 to ΞT .

2. THE PROBLEM IS WELL-POSED

Considering controls t ∈ [0, T ] �→ u(t) in C2(0, T ),
(1) is a well-posed boundary control problem
(see for instance (Curtain and Zwart, 1995, sec-
tion 3.3)). Indeed, setting

Z(x, t) := X(x, t) + G(x)u(t),

where

G(x) := sinx − sin 1
1 − cos 1

(1 − cos x)

is the solution of

G′′′ + G′ = 0
G(0) = G(1) = 0

G′(1) = −1,

we get the abstract evolution equation

Ż = FZ + Gu̇,

where the L2(0, 1) valued operator F is defined on
its domain

D(F ) = {f ∈ H3(0, 1), f(0) = f(1) = f ′(1) = 0}
by F (f) = −f ′′′ − f ′ . A simple but tedious
computation (Laroche, 2000, section 6.3) shows
that F is invertible, maximal and dissipative,
hence that F is the infinitesimal generator of
a strongly continuous semigroup of contractions
(see for instance (Pazy, 1983)).

3. “DIRECT” APPROACH

To determine the ai’s and the αi’s, we plug (2)-(3)
into the system equations (1) and sort along the
derivatives of y. Since by definition G contain all
the polynomials, we get the sequence of ordinary
differential equations

∀i ∈ N,




α′′′
i + α′

i + αi−1 = 0
αi(0) = αi(1) = 0

α′
i(1) = ai,



where we have set α−1 := 0. By definition of F
and G this means

∀i ∈ N,

{
αi + aiG ∈ D(F )

F (αi + aiG) = αi−1,

hence

α0 = −a0G

αi = F−1αi−1 − aiG, i ≥ 1.

As pointed out in (Laroche and Martin, 2000;
Laroche, 2000), this construction is very similar to
the Brunovsky decomposition in finite dimension.
Indeed, consider the finite dimension system

Ẋ = FX + FGu, X ∈ R
n,

with F an invertible n× n matrix. This system is
to be thought of as (1) since it is transformed by

Z(t) := X(t) + Gu(t)

into
Ż = FZ + Gu̇.

If we want a parametrization of the form,

X(t) =
n−1∑
i=0

αiy
(i)(t)

u(t) =
n∑

i=0

aiy
(i)(t),

with α1, . . . , αn in R
n we readily find

α0 = −a0G

αi = F−1αi−1 − aiG, i = 1, . . . , n − 1.

Moreover, the ai’s must be (up to a constant
factor) the coefficients of the characteristic poly-
nomial of F . If α1, . . . , αn form a basis (i.e., if the
system is controllable), the system written on this
basis is in controller canonical form.

The intuitive idea in infinite dimension is thus to
take for the ai’s the coefficients of the Fredholm
determinant of the operator F , i.e., the entire
function ∆F whose zeros are the eigenvalues of F
(such an entire function, which obviously general-
izes the characteristic polynomial, exists because
F is the inverse of an integral operator). Let
fi(x, λ), i = 1, 2, 3 be the fundamental solutions
at x = 1 of

f ′′′ + f ′ + λf = 0, (4)

i.e., the solutions which satisfy the initial condi-
tions

f
(j−1)
i (1, λ) = δij , i, j = 1, 2, 3. (5)

Now, λ is an eigenvalue of F if and only if (4) has
a nonzero solution f ∈ D(F ). Since f = c1f1 +
c2f2 + c3f3 for some real numbers c1, c2, c3, this is
possible if and only if

∆F (λ) :=

∣∣∣∣∣∣
f1(0, λ) f2(0, λ) f3(0, λ)
f1(1, λ) f2(1, λ) f3(1, λ)
f ′
1(1, λ) f ′

2(1, λ) f ′
3(1, λ)

∣∣∣∣∣∣ = 0.

Using (5), the Fredholm determinant of F is thus

∆F (λ) = f3(0, λ).

We now have compute the coefficients in the
expansion of ∆F . In this example, we could do this
directly by first computing f3(0, λ) in closed form.
However, this is very tedious and we use instead a
more general alternative approach. Indeed, it can
be seen that

∆F (λ) =
∞∑

i=0

(
W if̃3

)
(0)λi,

where

f̃3(x) := f3(x, 0) = 1 − cos(1 − x)

and W is the operator defined on L2(0, 1) by

f = Wg ⇔
{−f ′′′ − f ′ = g

f(1) = f ′(1) = f ′′(1) = 0,

in other words(
Wg

)
(x) =

∫ 1

x

(
cos(x − ξ) − 1

)
g(ξ)dξ.

Moreover, taking ai :=
(
W if̃3

)
(0) ensures the

series (3) is normally convergent when y is Gevrey
of order at most 3. The proof is exactly similar to
that of proposition 2 in the following section. We
are now in position to compute the αi’s. Unfortu-
nately, we have not yet been able to directly prove
the convergence of (2) and the density of the αi’s,
because our present proof requires F to be a Riesz-
spectral operator, a fact we have not been able
to establish. In the following section we prove by
an “indirect” approach that (1) is parametrizable.
We conjecture (and have experimentally checked
the first terms using Maple) that the αi’s obtained
by the “direct” and the “indirect” approach are
identical.
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Fig. 1. Open-loop control U(t).

Before going further, we illustrate the relevance
of this motion planning method with a numer-
ical simulation. The goal is to steer the system
from the initial steady state X(x, 0) = 0 to (a



neighborhood of) the final steady state X(x, T ) =
sin 1

1−cos 1 (1 − cos x) − sin x, with T := 0.02. Notice
that every steady state is a multiple of α0, hence
of G; in other words, we do not need to compute
the αi, i > 0 to steer the system from rest to
rest. We have thus taken (with the notations of
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Fig. 2. Motion of the system.

section 1)

Y (t) := Φγ

(
t

T

)
, 1 < 1 + 1/γ ≤ 3.

and as the approximate control the truncated
series

Ū(t) :=
5∑

i=0

aiY
(i)(t).

The results (with γ := 1) are displayed on figures 1
and 2.

4. “INDIRECT” APPROACH

We now tackle the same problem but first perform
the boundary feedback

u(t) := Xx(0, t) + v(t),

which symmetrizes the boundary conditions and
transforms (1) into


Xt + Xxxx + Xx = 0
X(0, t) = X(1, t) = 0

Xx(1, t) − Xx(0, t) = v(t).
(6)

The motivation for this feedback is to give rise to
an operator with antisymmetric hence normal al-
gebraic inverse, easily shown to be Riesz-spectral.
This feedback is just a technical intermediary and
need not be actually performed. As mentioned
earlier, we conjecture it does not change the αi’s.

The problem (6) is also well-posed: setting

Z(x, t) := X(x, t) + B(x)u(t),

where

B(x) :=
1
2

(
sin x − sin 1

1 − cos 1
(1 − cos x)

)
=

1
2
G(x)

is the solution of

B′′′ + B′ = 0
B(0) = B(1) = 0

B′(1) − B′(0) = −1,

we get the abstract evolution equation

Ż = AZ + Bv̇

where the operator A is L2(0, 1) valued, and
defined on its domain

D(A) = {f ∈ H3(0, 1), f(0) = f(1) = f ′(1)−f ′(0) = 0}
by A(f) = −f ′′′ − f ′. Its algebraic inverse is the
integral operator K on L2[0, 1] defined by

(
Kg

)
(x) :=

∫ 1

0

k(x, ξ)g(ξ)dξ,

with the antisymmetric kernel

k(x, ξ) :=




2
sin 1

2

sin
ξ

2
sin

x − ξ

2
sin

1 − x

2
if 0 ≤ ξ ≤ x,

2
sin 1

2

sin
x

2
sin

x − ξ

2
sin

1 − ξ

2
if x ≤ ξ ≤ 1.

K is compact (Curtain and Zwart, 1995, The-
orem A.3.24) and normal. Therefore (Curtain
and Zwart, 1995, Theorem A.4.25), A is closed,
its eigenvalues are isolated and its eigenvectors
form an orthogonal basis for L2(0, 1). Since more-
over (Laroche, 2000, section 6.3) its eigenvalues
are simple, A is a Riesz-spectral operator. Since K
is antisymmetric, all the eigenvalues of A lie on the
imaginary axis and are pairwise conjugate; there-
fore (Curtain and Zwart, 1995, Theorem 2.3.5),
A is the infinitesimal generator of a strongly con-
tinuous semigroup of contractions.

Exactly as in the previous section, we get the
sequence of ordinary differential equations

∀i ∈ N,




α′′′
i + α′

i + αi−1 = 0
αi(0) = αi(1) = 0
α′

i(1) − α′
i(0) = ai,

(7)

where we have set α−1 := 0. In other words

α0 = −a0B

αi = Kαi−1 − aiB, i ≥ 1,

The Fredholm determinant of A is given by

∆A(λ) :=

∣∣∣∣∣∣
e1(0, λ) e2(0, λ) e3(0, λ)
e1(1, λ) e2(1, λ) e3(1, λ)
e′1(1, λ) e′2(1, λ) − e′2(0, λ) e′3(1, λ)

∣∣∣∣∣∣
= e2(1, λ)e′3(1, λ) − e3(1, λ)e′2(1, λ) + e3(1, λ),

where ei(x, λ), i = 1, 2, 3 are the fundamental
solutions at x = 0 of (4), i.e., the solutions which
satisfy the initial conditions

e
(j−1)
i (1, λ) = δij , i, j = 1, 2, 3.

We can simplify ∆A(λ) by using the natural
symmetries of (4). Clearly,

fi(x, λ) = ei(1 − x,−λ), i = 1, 2, 3.



On the other hand f3 = c1e1+c2e2+c3e3 for some
real numbers c1, c2, c3; elementary computations
show that

c1 = e2(1, λ)e′3(1, λ) − e3(1, λ)e′2(1, λ) = f3(0, λ).

This implies

∆A(λ) = e3(1, λ) + e3(1,−λ).

As in the previous section, we compute the coef-
ficients in the expansion of ∆A in term of iterates
of

ẽ3(x) := e3(x, 0) = 1 − cos x

by the operator V defined on L2(0, 1) by

f = V g ⇔
{−f ′′′ − f ′ = g

f(0) = f ′(0) = f ′′(0) = 0,

in other words(
V g

)
(x) =

∫ x

0

(
cos(x − ξ) − 1

)
g(ξ)dξ.

Proposition 2. ∆A is an entire function,

∆A(λ) =
∞∑

i=0

aiλ
i,

where the coefficients ai are defined by

∀i ∈ N,

{
a2i = 2

(
V 2iẽ3

)
(1)

a2i+1 = 0.

Moreover the ai’s satisfy the estimates

∃M,R > 0,∀i ∈ N, ai ≤ M
Ri

(3i)!
,

hence ∆A is of Weierstrass order (at most) 1
3 .

PROOF. We first prove

∀i ≥ 0,∀x ∈ [0, 1],
∣∣(V i

0 ẽ3

)
(x)

∣∣ ≤ M
x3i

(3i)!

where M := supx∈[0,1] |ẽ3(x)|. Indeed, assume this
holds true. Using

|cos x − 1| ≤ x2

2
and integrating by part twice, this implies for
x ∈ [0, 1]∣∣(V i+1

0 f
)
(x)

∣∣ =
∣∣∣∣
∫ x

0

(
1 − cos(x − ξ)

)(
V i

0 f
)
(ξ)dξ

∣∣∣∣
≤ M

∫ x

0

(x − ξ)2

2
ξ3i

(3i)!
dξ

= M
ξ3i+3

(3i + 3)!
.

Using the same technique, we get similar estimates
for

(
V i

0 ẽ3

)
,
(
V i

0 ẽ3

)′, (
V i

0 ẽ3

)′′ and
(
V i

0 ẽ3

)′′′.
We then claim

e3(x, λ) =
∞∑

i=0

(
V i

0 ẽ3

)
(x)λi.

Indeed, the previous estimates ensure this series
is normally convergent, as well as its first, second

and third derivatives. It thus defines a function
in C3, which is easily seen to satisfy (4) with the
required initial conditions.

The proposition is now obvious, the Weierstrass
order resulting from (Saks and Zygmund, 1965,
chapter 7). �

Proposition 3. ∀y ∈ C∞(0, T ) with Gevrey order
(at most) 3, the series

X(x, t) =
∞∑

i=0

αi(x)y(i)(t)

u(t) =
∞∑

i=0

α′
i(1)y(i)(t)

are normally convergent and define a classical
solution of (1) on [0, 1] × [0, T ].

PROOF. The key point is to establish the L2

estimate

‖αi‖ ≤ M
Ri

(3i)!
.

Since A is antisymmetric, its eigenvalues are
purely imaginary and pairwise conjugate. More-
over 0 is not an eigenvalue. Denoting the eigen-
values by λi, we can therefore index them on Z

�

so that λ−i = λi and

λi√−1
<

λi+1√−1

(remember all the eigenvalues are simple). Let
(ui)i∈Z� be the associated Hilbert basis of eigen-
functions of (this basis exists since A is Riesz-
spectral).

By proposition 2, ∆A is entire of Weierstrass
order ≤ 1, hence (Saks and Zygmund, 1965,
chapter 7) can be factored into the normally
convergent infinite product

∆A(λ) = a0

∏
i∈Z�

(
1 − λ

λi

)
= a0

∏
i∈N�

(
1 +

λ2

|λi|2
)

Identifying this product with the expansion of ∆A,
we readily find for l ∈ N

a2l = a0

∑
i1,...il �=0
i1<...<il

1
|λi1 |2 . . . |λil

|2

a2l+1 = 0.

On the other hand for i ∈ N

αi =
1
a0

∑
k∈Z�

ukck

i∑
j=0

ajλ
j−i
k , (8)

where the ck’s are the coordinates of α0, i.e.,

α0 =
∑
k∈Z�

ckuk.



Indeed, assuming (8) holds true,

αi+1 = Kαi +
ai+1

a0
α0

=
1
a0

∑
k∈Z�

ck(Kuk)
i∑

j=0

ajλ
j−i
k +

ai+1

a0

∑
k∈Z�

ckuk

=
1
a0

∑
k∈Z�

ukck

i+1∑
j=0

ajλ
j−i−1
k ,

since Kuk = uk

λk
(K is the algebraic inverse of A).

This implies

‖αi‖2 =
1

|a0|2
∑
k∈Z�

|ck|2
∣∣λ−i

k

∣∣2
∣∣∣∣∣∣

i∑
j=0

ajλ
j
k

∣∣∣∣∣∣
2

We recognize in the last factor the expansion at
order i of ∆A(λk). Since a2l+1 = 0 for l ∈ N,∣∣∣∣∣∣

2l∑
j=0

ajλ
j
k

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2l+1∑
j=0

ajλ
j
k

∣∣∣∣∣∣
and∣∣∣∣∣∣

2l∑
j=0

ajλ
j
k

∣∣∣∣∣∣ = |a0|

∣∣∣∣∣∣∣∣
1 +

∑
i1,...il �=0
i1<...<il

λ2
k

|λi1 |2 . . . |λil
|2

∣∣∣∣∣∣∣∣
= |a0|

∣∣∣∣∣∣∣∣
1 −

∑
i1,...il �=0
i1<...<il

|λk|2
|λi1 |2 . . . |λil

|2

∣∣∣∣∣∣∣∣
= |a0|

∣∣∣∣∣∣∣∣
∑

i1,...il �=0,k

i1<...<il

|λk|2l

|λi1 |2 . . . |λil
|2

∣∣∣∣∣∣∣∣
≤ |a0| |a2l|

∣∣λ2l
k

∣∣ .

This implies

‖α2l‖ , ‖α2l+1‖ ≤ |a2l|
√ ∑

k∈Z�

|ck|2 = |a2l| ‖α0‖ .

Thanks to property 2, we finally get (up to renam-
ing M and R) the estimate

‖αi‖ ≤ M
Ri

(3i)!
.

We next find a similar estimate for the uniform
norm. By the Cauchy-Schwartz inequality

∥∥(
Kαi

)
(x)

∥∥ =
∣∣∣∣
∫ 1

0

k(x, ξ)αi−1(ξ)dξ

∣∣∣∣
≤ ‖k(x, .)‖ ‖αi−1‖ ≤ sup

[0,1]2
|k(., .)| ‖αi−1‖ ,

which implies (up to renaming M and R)

sup
x∈[0,1]

|αi(x)| ≤ M
Ri

(3i)!
.

Since the kernel k is twice differentiable with
respect to x with a bounded second derivative, we

readily obtain (up to renaming M and R) similar
estimates for α′

i and α′′
i . A similar estimates for

α′′′
i is then derived from (7).

These estimates clearly imply that the formal
solution of (6)

X(x, t) =
∞∑

i=0

αi(x)y(i)(t)

v(t) =
∞∑

i=0

aiy
(i)(t)

is normally convergent and define a classical solu-
tion for any y Gevrey of order at most 3, which
ends the proof. �

Finally, we have:

Proposition 4. span{αi, i ∈ N} = L2(0, 1).

The proof relies only on the fact that A is Riesz-
spectral and is similar to (Laroche and Martin,
2000, theorem 1) (see (Laroche, 2000, section 7.4)
for more details).
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