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1. INTRODUCTION

Transfer functions and associated frequency responses
are powerful tools for the analysis and synthesis of
stationary systems. Thus, several authors have extended
them to time varying systems. For example, Zadeh
defined the system function notion (Zadeh, 1961), also
called in this paper time varying s-transform notion
(TVST), to which the time varying frequency response
(TVFR) can be associated, and Jury defined the time
varying z-transform notion (TVZT) (Jury, 1964).
Many aspects of the definition of TVSTs and TVZTs
correspond to the definition of stationary equivalents.
However there has been little interest in TVSTs and
TVZTs since Zadeh and Jury, for several reasons.
First of all, the computation of the TVST or of the TVZT
representing a time varying system proves to be very
difficult in the general case.
Also, the stability of a time varying system can not be
directly deduced from the poles of its TVST or its TVZT
(Gibson, 1963).
Finally, relations used to determine the transfer function
of the connection of several stationary systems, have no
equivalent for time varying systems (Gibson, 1963).

In this paper, TVSTs and TVZTs are used for the
analysis of time varying systems. These two tools are
indeed used to extend many well known theorems to
time varying systems, particularly the initial and final
value theorems.

The paper is organized as follows. Section 2 deals with
the representation of continuous time varying systems
using TVSTs and three classes of systems are considered
: time varying systems with periodic coefficients, time
varying systems with asymptotically constant
coefficients and time varying systems with polynomial

coefficients. Section 3 deals with the representation of
discrete time varying systems with periodic coefficients.
Section 4 gives extensions of several well known
theorems to time varying system.

2. TIME VARYING FREQUENCY RESPONSES

In the 1950s, Zadeh (Zadeh, 1961) demonstrated that
linear time varying systems can be described by TVSTs
(also called systems functions) H(s, t). TVSTs are linked
to the impulse response of the system, h(t, ξ), which is
both a function of the time variable t and of the point in
time ξ when the impulse is applied, by the relation :

( ) ( )[ ] ( ) ξξξ ξ dethethtsH sst
�∞

∞−

−== ,,, �  . (1)

This representation of time varying systems is
particularly attractive in the area of automatic control
because it allows the computation of the steady and
transitory states of the system. Indeed, if y(t) is the
output of a system described by the TVST H(s, t), then
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where c denotes the convergence abscissa of H(s, t) and
where U(s) denotes the Laplace transform of the system
input. The computation of the TVST of a time varying
system is not easy in the general case. However, for
some classes of systems several authors have provided
solutions.
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2.1. Time varying systems with periodic coefficients

We consider continuous time periodic systems
characterized by the state space description :
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where u(t) ∈ � , y(t) ∈ � , x(t) ∈ � qx1 and where
coefficients A(t), B(t) and C(t) are real-valued matrices
of appropriate dimensions. Matrices A(t), B(t) and C(t)
are periodic functions of time variable t, namely :

( ) ( )TtAtA += ,   ( ) ( )TtBtB += ,   ( ) ( )TtCtC += , (4)

where period T represents the smallest value satisfying
relation (4). Matrices A(t), B(t) and C(t) are also
supposed continuous on [0, T], respectively elements of

[ ]TL qq ,0x
2 , [ ]TLq ,01x

2  and [ ]TL q ,0x1
2  and their derivatives

are supposed piecewise constant on [0, T]. Matrix A(t),
thus admits the following Fourier series expansion :
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Similar series expansions are also possible for matrices
B(t) and C(t), but using matrices Bk and Ck instead of
matrix Ak.
As demonstrated by Zadeh, system (3) can be
represented by a TVST, H(s, t), of the form :
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Transmittances Hk(s) of relation (6) are given by

( ) ����� 1−−=  ,  if     ( ) 1−− ��
exist, (7)

in which vectors �  and � , and matrix �  are
respectively given by :
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Matrix .  is defined as matrix �  but using Ck, and
( )( )qIksblkdiag 0ω+=

/
 where Iq denotes the identity

matrix of dimension q.
❑

2.2. Time varying systems with asymptotically constant
coefficients

We consider continuous systems characterized by a state
space description (3) where matrices A(t), B(t) and C(t)

are supposed continuous, bounded and analytic on 0 +.
They also met the following relations :
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Ac, Bc and Cc being constant matrices.
Without introducing restrictions, it is supposed that
matrix A(t) respects the following series expansion :
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and similarly for matrices B(t) and C(t), but using

matrices Bk and Ck, where 1xq
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Such a system can be represented by a TVST, H(s, t), of
the form (Garcia, 2001) :
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Transmittances Hk(s) of relation (13) are given by :
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in which vectors G  and H , and matrix I  are
respectively given by :

( ) ( ) ( )[ ]JsHsHsHT
210=

K
 , (15)

[ ]LTTTT BBB 210=
M

 , (16)

( )
NNN
NN
O
P

QQQ
QQ
R
S

= TUUU 012

01

0

0

AAA

AA

AV
 . (17)

Matrix W  is defined as matrix I  using Ck, and
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 where Iq denotes the identity

matrix of dimension q.
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2.3. Time varying systems with polynomial coefficients

Let a system characterized by differential equation :
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where u(t) ∈ Z , y(t) ∈ Z , and where coefficients ak(t)
and bk(t) are real-valued functions :
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An expression of the TVST H(s, t) of system (18) is
given in (Rudnitskii, 1960).



3. TIME VARYING Z-TRANSFORM

If h(n, k) denotes the response at time nTe (Te being the
sampling period) of a discrete time-varying system
whose input is a Delta Kronecker function δnk, (δnk = 1 if
n = k, δnk = 0 if n ≠ k) then by analogy to the stationary
case, the TVZT of this system can be defined by (Jury,
1964) :
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Using this representation, the output of the system at
time nTe, y(n), is related to its input by (Jury, 1964) :

( ) � −= � n zz)z(U)z,n(H� jny d
2

1 1 , (22)

where U(z) denotes the z-transform of the input, and Γ is
a closed path in the z-plane which encircles the
singularities of integral (22) counterclockwise.

3.1. Time varying systems with periodic coefficients

We consider a discrete periodic system characterized
by the state space description :
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where u(n) ∈ Z , y(n) ∈ Z , x(n) ∈ Z qx1 and where
coefficients A’ (n), B’ (n) and C’ (n) are real-valued
matrices of appropriate dimensions.

Matrices A’ (n), B’ (n) and C’ (n) are also periodic
functions of variable n, namely :

( ) ( )'Tn'An'A += ,     ( ) ( )'Tn'Bn'B += ,
(24)

( ) ( )'Tn'Cn'C += ,

where period T’ = MTe, M ∈ 
 , represents the smallest
value satisfying relation (24) and where Te denotes the
sampling period. These matrices are respectively

elements of [ ]'T,l nn 0x
2 , [ ]'T,l n 01x

2  and [ ]'T,l n 0x1
2 . Matrix

A’ (n) thus admits the following Fourier series
expansion (Garcia, 2001):
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Similar series expansions are also possible for matrices
B’ (n) and C’(n), but using matrices B’ k and C’ k.

As demonstrated by Jury, system (23) can be
represented by a TVZT, H(n, z), of the form (Jury,
1964) :
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Transmittances H’k(z) of relation (26) are given by :
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in which vectors  ’  and ! ’ , and matrices " ’  are
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Matrix 1 ’  is defined as matrix " ’  using C’ k, and
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2
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denotes the identity matrix of dimension q.
❑

4. ANALYSIS OF TIME VARYING SYSTEMS
USING TVST AND TVZT

4.1. Continuous time systems

Using the definitions given by relations (1) and (2), all
the following properties can be demonstrated (Garcia,
2001). They are extensions to time varying systems of
well known properties for stationary systems.

Frequency displacement
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Time displacement : displacement in relation to
observation instant t
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Time displacement : displacement in relation to impulse
instant ξ
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Complex integration
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Real differentiation in relation to observation instant t
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Real differentiation in relation to impulse instant ξ
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Initial value theorem

Let h(t, ξ) be the impulse response, and H(s, t) the
TVST of a time varying system $ . Also, let g(t, ξ) be
the impulse response of a system %  such that :
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Using differentiation property (relation (38)), the TVST
of system %  is given by :
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The limit of G(s, t) as s tends towards infinity is by
definition :
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It can be demonstrated if ∃ M ∈ ' + such that
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that relation (43) is equal to zero, thus using relation
(42),
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Thus, from relation (43) and (44) :
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Now, let y(t) be the response of system $  to the
input u(t) applied at time t = ξ, then by definition
(relation (2)) :
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where )( e)(  - sVsU sξ= . Given relation (47), y(t) can be
considered as the response of a time varying system of
TVST H(s, t)V(s) to impulse δ(t-ξ). Thus using relation
(45), the limit of y(t) as t tends towards ξ is given by :

)( ),(  lim)( lim sVsHsty
st

ξ
ξ ∞→→

= , (48)

or :

)( e ),(  lim)( lim sUsHsty s

st

ξ
ξ

ξ
∞→→

= . (49)

Relation (49) thus leads to the following theorem.+-,/.10121.436587:9<;>=@?<=BADC-EDADCGFH.I?<,/.10121.J3
Let h(t, ξ) be the impulse response and H(s, t) the TVST
of a time varying system $ . Let y(t) be the response of
system $  to an input u(t) applied at instant ξ. Thus, if
the TVSTs of both h(t, ξ) and of ξξ dd ),t(h  exist, and if
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U(s) being the Lapalce transform of u(t).
❑

Final value Theorem

The limit of G(s, t), TVST of g(t, ξ) given by relation
(41), as s tends towards 0 is :
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or after computation of the right side of relation (51) if
all the poles of G(s, t) have a negative real part ,
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using t - τ = ξ.
Now let y(t) be the response of system L  (defined in
section 4.2) to input u(t) applied at time t = ξ. Then by
definition (relation (2)), y(t) can be seen as the response
of a time varying system of TVST H(s, t)U(s) to impulse
δ(t). Thus, using relation (54) the limit of y(t), as t tends
towards infinity, is :
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Let h(t, ξ) be the impulse response and H(s, t) the TVST
of a time varying system L . Let y(t) be the response of
system L  to an input u(t) applied at time ξ. Thus, if the
TVST of both h(t, ξ) and of ξξ dd ),t(h  exist, and if
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U(s) being the Laplace transform of u(t).
❑

4.2. Discrete time systems

As in the continuous case, using the definitions given by
relations (21) and (22) the following properties can be
demonstrated (Garcia, 2001).

Complex displacement
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instant k
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Differentiation in relation to observation instant n

( ) ( ) ( )z,nHzz,nH
n

k,nh
n

 ln 
d

d

d

d +=+,-./01 (62)

Differentiation in relation to impulse instant k
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Initial value theorem

Let h(n, k) be the response, at time nTe of a time varying
system 9 , to the Delta Kroneker function δnk. TVZT
H(n, z) of 9  is by definition (relation (20)) :
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The limit of H(n, z), as z tends towards infinity, is thus :
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Thus, if the Delta Kroneker function is applied at time
k0Te, k0 ∈ B , the initial value of system 9  is given by :
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Now let y(n) be the response at time nTe of system 9  to
the input u*(t) defined by :
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y(n) is from definition (relation (22)) :
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Given relation (71), y(n) can be considered as the
response of a time varying system of TVZT H(n, z)V(z)
to the Delta Kroneker function δnk0. Thus, using relation
(45) the limit of y(n), as n tends towards k0, is:
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Let H(n, z) be the TVZT of a time varying system 9
whose response at time nTe to the Delta Kroneker
function δnk is h(n, k). System 9  is supplied by the input
signal whose z transform is U(z) given by relation (68).
If it exists, the initial value of the output of 9  is thus
given by
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Final value Theorem

Let h(n, k) be the impulse response, and H(n, z) the
TVZT of a time varying system 9 . Also, let

g(n, k) = h(n, k) – h(n, k+1) (74)

be the impulse response of a time varying system Z . By
definition (relation (20)), the TVZT G(n, z) of system Z
is given by :
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Let H(n, z) be the TVZT of a time varying system 9
whose response at time nTe to the Delta Kroneker
function δnk is h(n, k). System 9  is supplied by the input
signal whose z transform is U(z). The final value of the
output of 9  is thus given by

)( ),()1(limlim)(lim
1

zUznHzny
nzn

−=
+∞→→+∞→

, (86)

if )(lim ny
n +∞→

 and ),( lim knh
n ∞→

 ∀ k ∈ 8  exist.

❑

6. CONCLUSION

In this paper, time varying s-transform (or systems
functions) and time varying z-transforms, respectively
introduced by Zadeh (Zadeh, 1961) and Jury (Jury,
1964), have been used to extend to continuous and
discrete time varying systems, several properties and
theorems such as :

- time displacement properties,
- frequency displacement properties,
- scaling properties
- complex and real differentiation properties
- complex and real integration properties
- initial value theorems
- final value theorems.

Computation procedures for time varying s-transform
and for time varying z-transforms have also been given
for continuous time varying systems with :

- periodic coefficients,
- asymptotically constant coefficients,
- polynomial coefficients,

and for discrete time varying systems with periodic
coefficients.

Thus, these results, along with previous results on robust
control of periodic systems (Sabatier et al., 1998),
(Sabatier and Garcia, 2000), show the efficiency of time
varying s-transform, to which time varying frequency
responses can be associated, and of time varying z-
transforms for the analysis and control of time varying
systems.
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