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Abstract: Wiener-Hammerstein systems consist of a linear dynamic system followed by
a static nonlinearity, followed by another linear dynamic system. These models are
difficult to identify due to the presence of two dynamic systems. Usually, a nonlinear
estimation procedure is used to estimate the parameters of the different parts. This
nonlinear estimation procedure needs good starting values to converge quickly and/or
reliably to a global minimum. This paper proposes a method to compute a first estimate
based on one measurement record only. Copyright © 2002 IFAC.
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1. INTRODUCTION

Nonlinear models are used extensively in various
domains. They allow to represent physical processes
over a wider range of operating point than the linear
models. This gives rise to a growing need for the
identification of such models. For parametric
identification, the model parameters are found as the
minimizers of a cost function. The initialisation of
these parameters is of vital importance, since it
influences the number of optimization iterations of the
numerical search procedure and a bad choice can also
lead to local minima of the cost function. In this paper,
we propose an initialisation method for Wiener-
Hammerstein systems.

Wiener-Hammerstein systems model the nonlinearity
as a series of fundamental building blocks : linear

dynamic systems and a static nonlinearity. It is plain to
see that the static nonlinearity introduces the nonlinear
behaviour, while the linear dynamic systems allow to
model the memory that might be present in the system.
Figure 1 shows the Wiener-Hammerstein structure and
two special cases : the Wiener structure and the
Hammerstein structure.

There have been some papers about the identification
of the Wiener-Hammerstein structure (Boutayeb and
Darouach, 1995; Chen and Fassois, 1992; Bershad, et
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al., 2001). The methods (Boutayeb and Darouach,
1995; Chen and Fassois, 1992) explicitly state the
importance of a proper initialisation of the estimated
parameters.

While there is literature about initialisation of Wiener
models (Hagenblad 1999; Crama and Schoukens
2001) or Hammerstein models (Crama and Schoukens
2001), no paper dedicated to the generation of a first
estimate for Wiener-Hammerstein system could be
found in the literature.

2. MULTISINES AND THEIR USE IN 
NONLINEAR SYSTEM IDENTIFICATION

T hi s  s ec t i on  summa r i ze s  t he  r e su l t s  f r om
(Dobrowiecki and Schoukens, 2001) that are
necessary to understand the principle of the proposed
method.

2.1 Definition

The proposed periodic excitation signal, a random
phase multisine, is defined in (1). The user can choose
the amplitude distribution and basic frequency, but the
phases are random. This is an advantage because the
user can adapt the input signal spectrum to his needs :
e.g. identification of only a frequency band or flat
band-limited spectrum at the output.

(1)

In (1), Uk are the user-defined amplitudes, with
Uk=U-k and ϕk=−ϕ-k. ϕk are the phases taken from a

random distribution such that . Uk is
scaled such that the excitation power remains the same
as N increases.

2.2 Advantages

This choice of random multisine excitation signals has
several advantages, but only the most important will
be considered here. First of all, this signal is periodic,
allowing us to average out the noise. This would not be
possible with a noise excitation signal. A second point
to consider is that the periodicity allows us to use a
frequency domain representation of our data without
leakage problems. The amplitudes of the exciting
frequency lines are known whereas noise excitation
suffers from dips in the power spectrum (for one
particular realisation of the input vector), which
degrade the signal to noise ratio of the frequency
response function measurement seriously. The

proposed method could be extended to Gaussian
inputs because similar properties exist for this class of
excitation.

2.3 Specific properties for nonlinear systems

As explained in (Dobrowiecki and Schoukens, 2001),
it is possible to obtain an estimation of the related
dynamic system by dividing the output spectra with
the input spectra. The result of this division is (2).

(2)

The right-hand terms of this equality are respectively:
the true linear part of the system (G1(l)), the bias term
due to the odd nonlinearities (GB(l)) and a zero mean
stochastic term (GS(l)). The related linear dynamic
system (GR(l)) is the sum of the two first terms. In
(Dobrowiecki and Schoukens, 2001), an expression
for the related linear dynamic system for a nonlinear
element surrounded by linear blocks is given.

(3)

In (3), R(l) and S(l) are the frequency response
functions of the linear systems evaluated at the l-th
frequency line of the DFT (see Figure 1 for a definition
of R and S), and C(U,R) is a signal dependent constant.

GR is an important source of information in the
proposed method : GR gives us a link between the
Wiener and the Hammerstein part that isn’t influenced
by the static nonlinearity except for a scaling factor.
This scaling factor can be ignored because of the way
the proposed method deals with indetermination. If we
can eliminate the influence of GS in our measures of G,
we have an estimation of GR. There are two ways to
exclude GS from the G measurements (these two ways
can even be combined) : repeating the experiment
with different phase realisations of the random phase
multisines or fitting a linear parametric model through
the measurements. The first option makes sense
because GS has a zero mean. The second option works
because the parametric model will not be able to
follow the contributions of GS (unless too much
parameters are estimated) and the obtained model will
converge to GR (consistent estimator). The second
possibility was retained because computation power is
cheap and will continue to drop in price, whereas
measurement time can be considered as expensive.

To conclude, it is possible to recover the product of the
transfer function of the linear blocks of a Wiener-
Hammerstein system. However, knowing the product
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of two linear systems isn’t sufficient to separate the
two transfer functions : it is necessary to use the
information introduced by the static nonlinearity.

3. OUTLINE OF THE METHOD

An iterative scheme was derived to separate the
product of transfer functions into its two components :
the input linear transfer function (R in Figure 1, called
Wiener part in this paper) and the output linear transfer
function (S in Figure 1, called Hammerstein part in this
paper). All signal names (u, v, z and y) that will be used
in the description of the method are defined in Figure
1.

3.1 Basic idea

The first step is to make the best estimation possible of
GR, because it is going to be used extensively
afterwards. If the Wiener part was known, the
Hammerstein part could be deduced immediately from
the knowledge of GR. Then, as in (Crama and
Schoukens, 2001), the static nonlinearity could be
estimated, yielding a complete model of the Wiener-
Hammerstein system.

Since the Wiener part is not known in practice, an
iterative solution is used, where the previous
estimations of the Wiener part and of the Hammerstein
part are used to generate a new estimation of the static
nonlinearity. Because GR alone hasn’t enough
information to separate the two linear parts ,
information from the nonlinear effects is brought in :
the signal z is computed and used to form a new
estimate of the Hammerstein part. Afterwards, a new
estimate of the Wiener part is computed using (4). This
completes the iteration.

(4)

3.2 Putting it all together

To clarify the outlined method, a complete iteration
cycle will be given, using the measurement data
presented in 4. MEASUREMENT RESULTS.

Step 1. Estimate the related linear dynamic system GR.
Figure 2 shows the influence of the stochastic
nonlinear contributions and that the parametric
estimation of GR rejects the stochastic nonlinearities.
It cannot be stressed enough that the noise-like
behaviour of the measurements in Figure 2 is not due
to a bad signal-to-noise ratio, as the values of the
standard deviation in the same plot prove : the

standard deviation of the transfer function is well
below the absolute value of the variations of the
transfer function from the smooth model.

To keep this description short, some iterations will be
neglected and the text will describe how from the
estimations in iteration 25 the estimations in iteration
26 will be computed. Figure 3 shows the estimations
of the linear parts of the Wiener-Hammerstein system
compared to the true values.

Step 2. Using the knowledge of the Wiener part Rk-1
and of the Hammerstein part Sk-1 estimated at the
previous iteration step (iteration 25), the static
nonlinearity fk is estimated. The nonlinearity is
represented as a polynomial of degree 5. Other choices
of basis functions will be discussed in paragraph 3.3.
For each degree n, a signal yn is computed (see (5)).

 (5)

The signals yn are then compared with the measured
output and the coefficients of the basis functions are
then estimated such that the weighted sum of theRk jωl( )

GR jωl( )
Sk jωl( )
-------------------=
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Fig 2. Fit of the Related Linear Dynamic System GR 
(- :model; + :measurements; . :standard deviation)
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Fig 3. Comparison of R25 and S25 with the true R0 and 
S0 transfer function (- :Wiener part estimation;
-- :Hammerstein part estimation; + :true Wiener 
part value; o :true Hammerstein part value)
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signals yn approaches the measured output optimally
in a least square sense.

Figure 4 shows the obtained model for the static
nonlinearity (compared with a direct measurement of
the static nonlinearity).

Step 3. Estimate the Hammerstein part Sk. Now the
knowledge of our previous Wiener part Rk-1
estimation (R25) and our new estimation of the static
nonlinearity can be used to form a new estimation of
the Hammerstein part Sk. Figure 5 shows the data
points used and the resulting model.

Step 4. Estimate the Wiener part Rk. The new estimate
of the Wiener part Sk uses the information contained in
the related linear dynamic system GR and the new
Hammerstein part estimation Sk. Figure 6 shows the
data points used and the resulting model.

Once these steps are complete, the algorithm resumes
at step 2.

At each iteration, the new estimates are then taken
together to simulate the measured system and the
prediction error power is remembered along with the
estimated parameters. This data is used to choose the

model with the lowest prediction error power once the
maximum number of iterations is reached.

3.3 Implementation details

Avoiding indetermination. A second point to consider
is how to treat the indetermination present in our
model : with only input and output measures of the
Wiener-Hammerstein structure, it is impossible to
know how the gain is distributed among the three
blocks. The same goes for the delay : we can only
measure the total delay introduced by both linear
systems, but it is impossible to find out how the delay
is split up.

To resolve the gain uncertainty, certain choices were
made : for both linear transfer functions, the amplitude
gain is fixed to 1 at a frequency chosen by the user. As
a side-effect for the plots in this paper, the data has
always been suitably scaled - where appropriate - to
allow for an easier comparison.

For the delay, no assumption is made, but the delay is
left free. The reason behind this is that the estimation
of a parametric model limits the possible group delay
realisations and that the algorithm will automatically
converge to a delay distribution that allows it to fit the
phase easily.

Representation of the static nonlinearity. The static
nonlinearity may be represented by any set of basis
f u n c t io n s .  B e s id e s  x n ,  a  p i ec ew i s e  l i ne a r
approximation of the static nonlinearity was
considered. However, this idea was abandoned
because the piecewise linear approximation resulted in
slower convergence or even gave no result at all.
Simulations showed that the problem was linked with
the amount of nonlinear energy produced by the
estimation. These nonlinear contributions are essential
for the separation of the two linear parts because they
give the necessary additional knowledge. However,
the model of the static nonlinearity doesn’t produce
enough nonlinear contributions to cover the noise.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fig 4. Comparison of the estimated and the measured 
static nonlinearity (- :true value; -- :estimation)
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This is due to the choice of the breaking points of the
piecewise linear approximation : the input at the
modelled static nonlinearity has a probability density
function concentrated around its mean value. This
means that few points are sampled where the
nonlinearity saturates. Because the break points are
chosen for equal support from the data, the saturation
of our example tended to be too weak, causing the
nonlinear information to disappear beneath the noise.
On the other hand, each polynomial basis function
applied to the input introduces a substantial amount of
nonlinearity, making the separation of the two linear
parts of the Wiener-Hammerstein system much easier.
So a polynomial representation is used even though it
is less able to model a saturation efficiently.

Weighting. The scheme uses empiric rules to include
the noise information in the estimation process. The
Hammerstein part is estimated using the computed z
signal. The weighting of the estimation of the
Hammerstein part consists of the standard deviation of
the transfer function that will be estimated : the output
spectrum is divided by the computed spectrum of z for
each data record. The weights computed this way
contain the measurement noise and the stochastic
nonlinear contributions. For the estimation of the
Wiener part, the noise at the output was chosen as
heuristic value for the weights.

Convergence conditions. It is very difficult to give
exact information about the convergence of the
proposed method. Empirically, the most important
parameter seems to be the smoothness of the estimated
transfer function. As was already said, this can be
achieved in two ways : estimating a parametric model
and/or repeating the experiment with many different
input signals. The same method could be implemented
with non parametric estimation of the transfer
functions, but this would only converge for a high
number of different input signals, due to the necessity
of eliminating the stochastic contribution of GS. On
the other hand, if the right number of parameters is
used, parametric modelling of the transfer function
makes convergence possible with only a few or even
only one realisation of the excitation signals.

Choice of the excitation signal. The excitation signal is
chosen from the set of multisines. The excitation for
the experiments in this contains only odd components.
This is useful to see the even nonlinearities clearly,
because the odd nonlinearit ies do not create
components on the even lines. Another advantage is
that the estimation of the related dynamic system GR
will not be disturbed by the even part of the static
nonlinearity, because these contributions fall outside
of the frequency grid used for its estimation.

This isn’t the only possible choice of excitation signal,
however. Of course, the usual restrictions from the

linear identification theory apply : it is impossible to
identify a pole outside (or too close to the edge of) the
excitation or measurement range. There is an
additional condition for the identification process to be
able to make the difference between a stochastic
nonlinear contribution and ripple of the transfer
function : there have to be enough frequency lines
contained in the region where the ripple occurs.

Order selection. This is still an open question : if the
model order for the identification of the linear parts is
chosen too high, convergence problems might appear.
Take for example Figure 6 that shows how the effect
of a misplaced zero in the Hammerstein estimation is
eliminated because the model order isn’t high enough
to incorporate the fallacious peak at ca. 5500Hz. On
the other hand, the model order must be high enough.
Without prior knowledge, there is no way out but to
make a guess and try different combinations.

4. MEASUREMENT RESULTS

4.1 Measurement setup

The presented initialisation methods were applied to
data measured on a physical system. This system was
built as a test object, where all the possible signals
were accessible (u(t), v(t), z(t) and y(t), see Figure 1),
allowing to measure the transfer function of each
block on its own and to compare the identified models
with the reality.

The measurements were done with a VXI-system,
measuring both the input and the output signals. The
system was excited by an arbitrary function generator
(HP E1445A) and measured with two samplers (HP
E1437A).

As required by the described methods, odd random
phase multisines were used to excite the systems. The
excited band was from the lowest available frequency
grid line to approximately 10kHz. The sampling

Fig 7. Measurement data (+ :data points; . :standard 
deviation)
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frequency was 156.25kHz and each period was 8192
points long, resulting in a frequency resolution of ca.
19.1Hz. 32 periods were measured with a random
phase multisine excitation, after the system was
allowed 2s time to settle. Figure 7 shows the 32
measured periods together with the standard deviation.

4.2 Identified models

Figure 8, Figure 9 and Figure 10 show the identified
models that best explain the measurements. In Figure
8 and Figure 10, only the quality of the amplitude
estimation is assessed. The phase estimation is not
evaluated due to the indetermination of the delay. The
method has obviously succeeded in separating the
main features of the linear systems : the zero of the
Hammerstein system is correctly located, the
bandwidths are correctly estimated. Of course, the fit
isn’t perfect yet, but the results are only intended to
serve as initialization for a nonlinear estimation
procedure that fits all parameters together.

5. CONCLUSION

The presented method looks promising when
compared with the real transfer functions of the test

system. The robustness to model errors has already
been tested, but could perhaps be taken further. Until
the  comple te  non l inear  e s t imator  has  been
implemented, the question remains whether the
computed estimations give good convergence results.
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