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Abstract: This paper describes a neural predictive control toolbox developed in 
Matlab/Simulink environment. The application permits all phases of the system design: 
simulation of the plant by means of any Simulink model, loading of input/output data, 
definition of the neural network architecture, training, and, finally, application of the 
predictive control strategy based on the neural network model.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Control of complex industrial processes like MIMO 
(Multiple Input Multiple Output) processes, processes 
with long and variable dead time, or processes with 
significant non-linearities is not well resolved with 
the classical PID. It is necessary to employ other 
techniques that can deal with this class of processes. 
One of the most extended control techniques, in 
particular in petrochemical processes, is the Model-
based predictive control (MBPC). MBPC methods 
have been shown to be an effective tool for reducing 
operating costs, one of the main aims in industry, and 
have been playing a very important role in the area of 
process control (Richalet, 1993; Camacho and 
Bordons, 1995) due to their ability to handle difficult 
control problems which involve multivariable process 
interactions, constraints in the system variables, time 
delays, etc. 
 
The classical MBPC algorithms use linear models of 
the process to predict the output of the process over a 
certain horizon, and to evaluate a future sequence of 
control signals in order to minimize a certain cost 
function that takes account of the future output 
prediction errors over a reference trajectory, as well 
as control efforts (Clarke, et al., 1987; Garcia, et al., 
1989). When no model of the system is available, the 
classical system-identification theory (Ljung, 1987) 
provides possible solutions to the problem, but when 
the process is non-linear and it is driven over a wide 
dynamic operating range, the use of linear models 
becomes impractical, and the identification of non-
linear models for control becomes a necessity. 
 
In recent years, the use of neural networks for 
nonlinear system identification has proved to be 
extremely successful. In fact, the idea of 
incorporating neural-network models in MBPC 
algorithms has been proposed by a number of 
researchers (Bhat and McAvoy, 1989; Hunt, et al., 

1992; Williams, 1990; Zamarreño and Vega, 1999). 
In these cases, the neural model has been embedded 
into the MBPC scheme providing a neural predictive 
controller (NPC). 
 
NPC has been applied not only in simulation, but also 
in real industrial processes (Zamarreño and Vega, 
1997). For successful application to a real process, a 
tool for control system design would be helpful for 
tuning and configuration of the controller, besides 
development of the model. Among the computer-
based environments for control system design, 
perhaps one of the most popular is Matlab, from The 
Mathworks, Inc. 
 
This paper describes a computer-aided control 
systems design (CACSD) for NPC. The NPC 
algorithm employed was first described by the author 
in (Zamarreño and Vega, 1996) and the neural 
network for obtaining the predictions in the MBPC 
scheme is called state-space neural network (ssNN) 
(Zamarreño and Vega, 1998). 
 
This paper begins with a description of the NPC and 
the way in which it is implemented. Next, the NPC 
toolbox is described in detail, explaining the steps 
that must be carried out. Finally, the paper ends with 
some conclusions.  
 
 

2. NEURAL PREDICTIVE CONTROL 
 

Neural predictive control is basically a type of model-
based predictive control, where the model for 
predictions is a neural network. Fig. 1 represents the 
block scheme of the control configuration. The 
different parts involved in the neural predictive 
control are explained below. 
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Fig. 1. Block scheme of the model-based predictive 
control configuration. 

2.1 Algorithm description 
 
The model predictive control (MPC) strategy (De 
Keyser, 1991) is based on the use of a model to 
predict the future output trajectory of the process. 
Next, the algorithm computes the future control 
actions to minimize a performance index at each 
sampling time t, and the first control action is applied. 
The procedure is repeated at time t + 1. 
 
Optimization problem. The control evaluation 
consists of the minimization problem of the following 
general index, which is formulated in such a way that 
MIMO systems can be dealt with, as well as systems 
in which the number of manipulated variables is not 
equal to the number of controlled variables: 
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The minimization of index J is performed subject to 
the following restrictions: 
a) Restrictions on the value of the manipulated 
variable: 
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b) Restrictions on the variation of the manipulated 
variable: 
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c) Restrictions on the future values of the outputs: 
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d) Restrictions on the final value of the manipulated 
variable: 

udim,...,1k;Nuj   
0)jt(u

k

k

−=≥
=+∆

 

 
where uk are the control variables, $y k, the model 
prediction and refk the reference trajectory which is 
defined, as is usual in MPC, by a first-order system 

with time constant αk, that drives the system from the 
present point to the desired set-point spk, i.e., 
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Other parameters are as follows: 
• γk and βk: weighting factors for each output and 

input, respectively. 
• ηk and σk: the output and input availability 

factors. Possible discrete values are {0,1}. If, for 
any reason, the field measurements do not reach 
the controller, they are zero. 

• N1k and N2k: the initial and the prediction 
horizons for each output. 

• Nuk: the control horizon for each input. 
• Umink, Umaxk, ∆Umink and ∆Umaxk: limits for 

the control actions and control increments, 
respectively. 

• Ymink, Ymaxk: minimum and maximum values of 
the output between the horizons defined by N3k 
and N4k. 

 
Note that the status of every variable is taken into 
account through a set of weighting factors that modify 
the optimization problem accordingly, making the 
NPC very flexible. On-line reconfiguration is 
possible. This reconfiguration issue is of great interest 
in the event of auto/manual operations, when one 
output is not available, in case of changes from 
controlled to limited status, etc. All these 
characteristics are included in the toolbox. 
 
Non-linear effects are introduced into the problem 
formulation through the expression chosen for $y k and 
by means of the constraints. The predictions are 
functions, represented by a state-space neural 
network, of the past and future values of the control 
variables and future values of the disturbances d. The 
control problem can be seen as a standard non-linear 
programming (NLP) problem that will be solved in 
the NPC toolbox by means of the constr function 
from the optimization toolbox. 
 
The control signal at each sampling time t is the 
solution to the previous optimization problem. The 
solution gives the control signals uk(t), 
uk(t+1),…,uk(t+Nuk-1) (k=1,…,dim-u), but only the 
first one, uk(t), is actually applied to the plant. As the 
function to be minimized is non-linear and very 
complex, no analytical solution is given; the problem 
is solved numerically at each sampling time. 
 
2.2 Modelling and non-linear predictions evaluation 
 
A deterministic non-linear system can be represented 
in discrete state-space form as: 
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where x ∈ℜs  is the state vector, u ∈ℜ −n d  is the 
control input vector, d ∈ℜd  is the measurable 
disturbance vector, y ∈ℜm  is the output vector, and 

f1: ℜ × ℜ → ℜs n s  and f2: ℜ → ℜs m  are two static 
nonlinear mappings. 
 
It is well known from the neural-network field that it 
is possible to represent any arbitrary non-linear 
function by means of a neural network with one 
hidden layer consisting of non-linear elements 
(Hornik et al., 1989). Thus, the proposed ssNN 
architecture, with suitable hidden layers to obtain f1 
and f2, can be actually used to represent (7): 
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where the first equation takes into account the possible 
nonlinear dynamics of the states, and the second is a 
nonlinear mapping from the states to the output. This 
NN can be represented as a block diagram (Fig. 2). 
The parameters W and B are properly dimensioned 
matrices and vectors, respectively, which must be 
estimated to fit the ssNN and the real plant response, 
given an ordered temporal sequence for the inputs. 
The sum squared error (SSE) between the real output 
and the simulated one can be used as a criterion to 
adjust the weights and bias in the NN using a gradient-
based technique (Hoekstra and Kooijman, 1991). The 
gradient can be explicitly evaluated and, consequently, 
the convergence speed improved. However, better 
results were obtained when training experiments were 
performed using a random search technique, such as 
the modified random search optimization method 
(Baba, 1989) and this technique was used in this 
toolbox for training the ssNN. 
 
The use of this model to generate predictions is more 
or less straightforward. The way to proceed is to let 
the dynamical system evolve a number of steps equal 
to the desired number of predictions. All of the 
predictions from the system are obtained from the 
actual state of the system (given by $x ), the actual and 
future values of u (the last vector produced by the 
optimization algorithm) and the actual and future 
values of the disturbances (in the actual version, 
future values are assumed constant). Whenever the 
controller is called (at every sampling time), the ssNN 
must obtain the next state in order to keep up to date 
when the predictions are needed. 

Wi
Bh

Wh

Wr

Wh2 Wo
Bh2

LIN
u, d

NL LIN
y

NL LIN

LIN: Linear Processing Elements
NL:  Non-linear Processing Elements (Sigmoid)  

Fig. 2. State-space neural network. 

3. THE NPC TOOLBOX 
 
For NPC design, a CACSD is convenient. This allows 
to simulate the process, training of the neural network 
based on input/output data collection, and tuning of 
the parameters of the controller to obtain an 
appropriate response. The tool that allows all these 
has been developed in the Matlab/Simulink 
environment. 
 
As it has been said before, the application has been 
divided into five steps: 
1. Definition of the model to be controlled and 

inputs for identification purposes. 
2. Normalization of the input/output data for feeding 

in to the neural network. 
3. Definition and training of the ssNN neural 

network. 
4. Definition of a steady state for the model 

representing the plant, to become the initial 
condition for simulation. 

5. Definition of the NPC parameters and application 
of the control algorithm in simulation. 

 
In the following, a description of each of the steps is 
given. 
 
3.1 Simulink model and inputs 
 
The first step to be accomplished (Fig. 3) is to select 
the simulink model that will represent the plant to be 
controlled. The toolbox automatically detects the 
number of inputs and number of outputs as well as 
their names if the simulink model is well structured 
with inputs and outputs ports. 
 
Other parameters to be entered in this window are the 
simulation time for data generation to be used at the 
identification phase as well as the sampling time to be 
used. 
 
Finally, for the inputs provided by the simulink 
model, one has to select if they are manipulated 
inputs or disturbances. Whatever the type of input, for 
generation of the outputs through the model, the 
inputs must be selected. There are several types of 
inputs: 
• From an ASCII file 
• Random, gaussian signal 
• Random, binary signal 
• Pseudorandom, binary signal 
• Sum-of-sinusoid signal 
• Protocol 
• Sinusoid 
• Constant 
 

(8) 



     

 

Fig. 3. First step: Model and data generation. 

 
3.2 Normalization of the data 
 
Neural network training is best carried out if the data 
has been normalized. At this stage, one has to enter 
appropriate limits for the inputs and outputs, so the 
toolbox can perform the mapping of these intervals to 
the interval (-1,1). 
 
3.3 Neural network architecture and training 
 
The toolbox is designed to provide various kinds of 
neural networks architectures and various training 
algorithms, but right now there is only one possibility 
for choosing: ssNN for the neural network 
architecture and a modified random optimization 
method for the training algorithm. In future versions, 
this will be augmented with other architectures and 
algorithms. 
 
As the ssNN is composed of five layers, as explained 
in section 2.2, one has to enter the number of neurons 
(Fig. 4) for first and second hidden layer, as well as 
for the state layer. Besides, as neurons contained in 
hidden layers may have nonlinear transfer functions, 
one has to select what kind of function they have. 
 
Another parameter is the data interval to be used for 
the training algorithm. This has two goals: first, as 
ssNN is a recurrent network, it is possible that the 
initial dynamic behaviour is different from the model, 
so the first samples should not be considered; and 
second, maybe one desires to preserve some of the 
data for validation purposes. 
 
Finally, the parameters for the training algorithm 
must be provided. Once it is done, one has to push the 
“Train new network” button, so the training 
procedure begins. Evolution of the error along the 
training epochs is plotted, so one can see if training is 
being successful. Another possibility, once the 
algorithm has finished, is to compare the data with the 
response of the ssNN (Fig. 5). It is possible, that, after 
that, re-training is necessary. In this case, there is 
button labelled “Train again” that continues the 
training from the last set of weights obtained. 
 

 

Fig. 4. Third step: definition of the neural network 
architecture and parameters of the training 
algorithm. 

 

Fig. 5. Identification inputs (above) and comparison 
between the real outputs and ssNN outputs 
(below). 

 
3.4 Steady state as initial condition 
 
For applying the control algorithm to the simulink 
model, it is desirable that the plant be in steady state 
at the beginning of the simulation. This is the goal of 
the fourth step of the toolbox. As the steady state of 
the model depends on the value of the inputs, the user 
has to introduce the value of every input as well as 
the desired accuracy of the steady state and the 
maximum number of iterations. With these data, the 
toolbox simulates the model until the steady state is 
reached. 
 
3.5 Control 
 
The last step is the application of the neural predictive 
controller based on the predictions provided by the 
ssNN previously designed to the simulink model 
representing the plant. 
 



     

 

Fig. 6. Fifth step: NPC parameters. 

All the parameters (Fig. 6) explained in section 2.1 
have to be provided for every manipulated variable 
and every controlled or constrained output. The 
functionality is complete, including the possibility of 
simulating faults in sensors or actuators through the 
availability buttons. The set-point for every controlled 
output can be chosen with the number of steps desired 
by the user. Once all the parameters have been 
introduced, the user can run the simulation in closed 
loop. 
 
3.6 Exploiting the results 
 
The toolbox provides another possibilities like 
plotting and saving to disk several signals like 
input/output data for the identification, neural 
network response to the same pattern that the model, 
manipulated variables provided by the NPC, set-
point, and, of course, evolution of controlled variables 
(Fig. 7). 
 
There are two stages where the toolbox may require 
significant calculation time: training of the neural 
network and NPC application. In both cases, the 
optimization problem is time consuming. For 
flexibility, the user can save the current session and 
load it afterwards. 
 

 

Fig. 7. Viewing results of the control algorithm. 

4. COMPARISON WITH OTHER SIMILAR 
TOOLS 

 
There exist other neural predictive controllers 
implemented as m-functions in Matlab. For example, 
version 4.0 of the Neural Network Toolbox (Demouth 
and Beale, 2001) implements a Simulink block called 
NN Predictive Controller. This block gives access to 
the identification phase, but only the identification of 
a neural network ARX model is possible. Another 
limitation of the controller is that N1 is fixed at 1 and 
only SISO models can be controlled with this block, 
which is a severe constraint since the main 
applicability of predictive control in industry is for 
multivariable processes. 
 
Another toolkit called NNCTRL toolkit (Norgaard, 
2000) also includes a Nonlinear Generalized 
Predictive Control based on Neural Networks. This 
toolkit is an add-on to the NNSYSID toolbox, which 
is a toolbox for system identification with neural 
networks. The toolkit does not provide a graphical 
user interface for designing the controller. 
Identification and control phases are accomplished 
independently, though the neural network model 
obtained at the identification phase can be used in the 
controller directly. For configuration of the controller, 
the user has to modify an initialization ASCII file 
which acts as a framework where the user writes the 
design parameters, experiment definition, etc. With 
respect to the predictive controller implemented in the 
toolkit, there are two versions called npccon1 which 
uses a Quasi-Newton method for optimization, and 
npccon2 which uses a Newton-based Levenberg-
Marquardt method. The toolkit is intended to be used 
on SISO processes which can be a handicap in the 
application to a multivariable process. 
 
In summary, the neural predictive control toolbox 
presented in this paper is flexible enough to 
accommodate other neural networks models and/or 
training algorithms, is easy to use through the 
graphical user interface and can be applied to MIMO 
processes. This last characteristic cannot be found in 
other similar products, as known by the author. 

 
 

4. CONCLUSION 
 
This paper has described a neural predictive control 
toolbox1 developed in the Matlab/Simulink 
environment. The toolbox provides an easy way to do 
the design and validation of the NPC through 
simulation. The interface is divided in five windows 
that match the five steps required to design the NPC. 
The interface is easy to use and intuitive. 
 
Programming of the application had in mind the 
possibility of improving its characteristics. In 
particular, adding a new neural network architecture 

                                                           
1 Download at http://www.isa.cie.uva.es/productos/ 



     

or a new training algorithm will be easy. This will be 
accomplished as future work. 
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