

NEURAL PREDICTIVE CONTROL TOOLBOX FOR CACSD IN MATLAB ENVIRONMENT

 Jesús M. Zamarreño

Dpt. System Engineering and Automatic Control. University of Valladolid

Abstract: This paper describes a neural predictive control toolbox developed in
Matlab/Simulink environment. The application permits all phases of the system design:
simulation of the plant by means of any Simulink model, loading of input/output data,
definition of the neural network architecture, training, and, finally, application of the
predictive control strategy based on the neural network model. Copyright © 2002 IFAC

Keywords: Computer-aided control systems design, Predictive control, Model-based
control, Neural control, Neural networks.

1. INTRODUCTION

Control of complex industrial processes like MIMO
(Multiple Input Multiple Output) processes, processes
with long and variable dead time, or processes with
significant non-linearities is not well resolved with
the classical PID. It is necessary to employ other
techniques that can deal with this class of processes.
One of the most extended control techniques, in
particular in petrochemical processes, is the Model-
based predictive control (MBPC). MBPC methods
have been shown to be an effective tool for reducing
operating costs, one of the main aims in industry, and
have been playing a very important role in the area of
process control (Richalet, 1993; Camacho and
Bordons, 1995) due to their ability to handle difficult
control problems which involve multivariable process
interactions, constraints in the system variables, time
delays, etc.

The classical MBPC algorithms use linear models of
the process to predict the output of the process over a
certain horizon, and to evaluate a future sequence of
control signals in order to minimize a certain cost
function that takes account of the future output
prediction errors over a reference trajectory, as well
as control efforts (Clarke, et al., 1987; Garcia, et al.,
1989). When no model of the system is available, the
classical system-identification theory (Ljung, 1987)
provides possible solutions to the problem, but when
the process is non-linear and it is driven over a wide
dynamic operating range, the use of linear models
becomes impractical, and the identification of non-
linear models for control becomes a necessity.

In recent years, the use of neural networks for
nonlinear system identification has proved to be
extremely successful. In fact, the idea of
incorporating neural-network models in MBPC
algorithms has been proposed by a number of
researchers (Bhat and McAvoy, 1989; Hunt, et al.,

1992; Williams, 1990; Zamarreño and Vega, 1999).
In these cases, the neural model has been embedded
into the MBPC scheme providing a neural predictive
controller (NPC).

NPC has been applied not only in simulation, but also
in real industrial processes (Zamarreño and Vega,
1997). For successful application to a real process, a
tool for control system design would be helpful for
tuning and configuration of the controller, besides
development of the model. Among the computer-
based environments for control system design,
perhaps one of the most popular is Matlab, from The
Mathworks, Inc.

This paper describes a computer-aided control
systems design (CACSD) for NPC. The NPC
algorithm employed was first described by the author
in (Zamarreño and Vega, 1996) and the neural
network for obtaining the predictions in the MBPC
scheme is called state-space neural network (ssNN)
(Zamarreño and Vega, 1998).

This paper begins with a description of the NPC and
the way in which it is implemented. Next, the NPC
toolbox is described in detail, explaining the steps
that must be carried out. Finally, the paper ends with
some conclusions.

2. NEURAL PREDICTIVE CONTROL

Neural predictive control is basically a type of model-
based predictive control, where the model for
predictions is a neural network. Fig. 1 represents the
block scheme of the control configuration. The
different parts involved in the neural predictive
control are explained below.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

Control
parameters

y(t)

$ (), $ (),y t y t+ +1 2 K

u(t),u(t+1),…

u(t)Minimization
of J

Control
signal Plant

Calculus
of index J

Prediction
model

Fig. 1. Block scheme of the model-based predictive
control configuration.

2.1 Algorithm description

The model predictive control (MPC) strategy (De
Keyser, 1991) is based on the use of a model to
predict the future output trajectory of the process.
Next, the algorithm computes the future control
actions to minimize a performance index at each
sampling time t, and the first control action is applied.
The procedure is repeated at time t + 1.

Optimization problem. The control evaluation
consists of the minimization problem of the following
general index, which is formulated in such a way that
MIMO systems can be dealt with, as well as systems
in which the number of manipulated variables is not
equal to the number of controlled variables:

J y t j ref t j

u t j u t j

k k
k

y

k k
j N

N

k
k

u

k k k
j

Nu
k

k

k

= ⋅ ⋅ + − + +

+ ⋅ ⋅ + − − + −

=

−

=

=

−

=

∑ ∑

∑ ∑

η γ

σ β

1

2

1

2

1

2

1

1 2))

dim

dim

($ () ())

(() (

The minimization of index J is performed subject to
the following restrictions:
a) Restrictions on the value of the manipulated
variable:

u-dim1,...,=k; Nu1,..,=j
Umax)1jt(uUmin

k

kkk ≤−+≤

b) Restrictions on the variation of the manipulated
variable:

u-dim1,...,=k; Nu1,..,=j
Umax)2jt(u)1jt(uUmin

k

kkkk ∆≤−+−−+≤∆

c) Restrictions on the future values of the outputs:

y-dim1,...,=k; N4,..,N3=j
Ymax)jt(ŷYmin

kk

kkk ≤+≤

d) Restrictions on the final value of the manipulated
variable:

udim,...,1k;Nuj
0)jt(u

k

k

−=≥
=+∆

where uk are the control variables, $y k, the model
prediction and refk the reference trajectory which is
defined, as is usual in MPC, by a first-order system

with time constant αk, that drives the system from the
present point to the desired set-point spk, i.e.,

ref
z

spk
k

k
k=

− − −
α

α1 1 1()

Other parameters are as follows:
• γk and βk: weighting factors for each output and

input, respectively.
• ηk and σk: the output and input availability

factors. Possible discrete values are {0,1}. If, for
any reason, the field measurements do not reach
the controller, they are zero.

• N1k and N2k: the initial and the prediction
horizons for each output.

• Nuk: the control horizon for each input.
• Umink, Umaxk, ∆Umink and ∆Umaxk: limits for

the control actions and control increments,
respectively.

• Ymink, Ymaxk: minimum and maximum values of
the output between the horizons defined by N3k
and N4k.

Note that the status of every variable is taken into
account through a set of weighting factors that modify
the optimization problem accordingly, making the
NPC very flexible. On-line reconfiguration is
possible. This reconfiguration issue is of great interest
in the event of auto/manual operations, when one
output is not available, in case of changes from
controlled to limited status, etc. All these
characteristics are included in the toolbox.

Non-linear effects are introduced into the problem
formulation through the expression chosen for $y k and
by means of the constraints. The predictions are
functions, represented by a state-space neural
network, of the past and future values of the control
variables and future values of the disturbances d. The
control problem can be seen as a standard non-linear
programming (NLP) problem that will be solved in
the NPC toolbox by means of the constr function
from the optimization toolbox.

The control signal at each sampling time t is the
solution to the previous optimization problem. The
solution gives the control signals uk(t),
uk(t+1),…,uk(t+Nuk-1) (k=1,…,dim-u), but only the
first one, uk(t), is actually applied to the plant. As the
function to be minimized is non-linear and very
complex, no analytical solution is given; the problem
is solved numerically at each sampling time.

2.2 Modelling and non-linear predictions evaluation

A deterministic non-linear system can be represented
in discrete state-space form as:

x x u d
y x
() ((), (), ())
() (())
k f k k k
k f k

+ =
=
1 1

2

(1)

(2)

(3)

(4)

(5)

(6)

(7)

where x ∈ℜs is the state vector, u ∈ℜ −n d is the
control input vector, d ∈ℜd is the measurable
disturbance vector, y ∈ℜm is the output vector, and

f1: ℜ × ℜ → ℜs n s and f2: ℜ → ℜs m are two static
nonlinear mappings.

It is well known from the neural-network field that it
is possible to represent any arbitrary non-linear
function by means of a neural network with one
hidden layer consisting of non-linear elements
(Hornik et al., 1989). Thus, the proposed ssNN
architecture, with suitable hidden layers to obtain f1
and f2, can be actually used to represent (7):

)+(t)ˆf2(=(t)ˆ

) +
1)-(t
1)-(t

+1)-(tˆ f1(=(t)ˆ

h2h2o

hirh

BxWWy

B
d
u

WxWWx

⋅⋅

⋅⋅⋅

where the first equation takes into account the possible
nonlinear dynamics of the states, and the second is a
nonlinear mapping from the states to the output. This
NN can be represented as a block diagram (Fig. 2).
The parameters W and B are properly dimensioned
matrices and vectors, respectively, which must be
estimated to fit the ssNN and the real plant response,
given an ordered temporal sequence for the inputs.
The sum squared error (SSE) between the real output
and the simulated one can be used as a criterion to
adjust the weights and bias in the NN using a gradient-
based technique (Hoekstra and Kooijman, 1991). The
gradient can be explicitly evaluated and, consequently,
the convergence speed improved. However, better
results were obtained when training experiments were
performed using a random search technique, such as
the modified random search optimization method
(Baba, 1989) and this technique was used in this
toolbox for training the ssNN.

The use of this model to generate predictions is more
or less straightforward. The way to proceed is to let
the dynamical system evolve a number of steps equal
to the desired number of predictions. All of the
predictions from the system are obtained from the
actual state of the system (given by $x), the actual and
future values of u (the last vector produced by the
optimization algorithm) and the actual and future
values of the disturbances (in the actual version,
future values are assumed constant). Whenever the
controller is called (at every sampling time), the ssNN
must obtain the next state in order to keep up to date
when the predictions are needed.

Wi
Bh

Wh

Wr

Wh2 Wo
Bh2

LIN
u, d

NL LIN
y

NL LIN

LIN: Linear Processing Elements
NL: Non-linear Processing Elements (Sigmoid)

Fig. 2. State-space neural network.

3. THE NPC TOOLBOX

For NPC design, a CACSD is convenient. This allows
to simulate the process, training of the neural network
based on input/output data collection, and tuning of
the parameters of the controller to obtain an
appropriate response. The tool that allows all these
has been developed in the Matlab/Simulink
environment.

As it has been said before, the application has been
divided into five steps:
1. Definition of the model to be controlled and

inputs for identification purposes.
2. Normalization of the input/output data for feeding

in to the neural network.
3. Definition and training of the ssNN neural

network.
4. Definition of a steady state for the model

representing the plant, to become the initial
condition for simulation.

5. Definition of the NPC parameters and application
of the control algorithm in simulation.

In the following, a description of each of the steps is
given.

3.1 Simulink model and inputs

The first step to be accomplished (Fig. 3) is to select
the simulink model that will represent the plant to be
controlled. The toolbox automatically detects the
number of inputs and number of outputs as well as
their names if the simulink model is well structured
with inputs and outputs ports.

Other parameters to be entered in this window are the
simulation time for data generation to be used at the
identification phase as well as the sampling time to be
used.

Finally, for the inputs provided by the simulink
model, one has to select if they are manipulated
inputs or disturbances. Whatever the type of input, for
generation of the outputs through the model, the
inputs must be selected. There are several types of
inputs:
• From an ASCII file
• Random, gaussian signal
• Random, binary signal
• Pseudorandom, binary signal
• Sum-of-sinusoid signal
• Protocol
• Sinusoid
• Constant

(8)

Fig. 3. First step: Model and data generation.

3.2 Normalization of the data

Neural network training is best carried out if the data
has been normalized. At this stage, one has to enter
appropriate limits for the inputs and outputs, so the
toolbox can perform the mapping of these intervals to
the interval (-1,1).

3.3 Neural network architecture and training

The toolbox is designed to provide various kinds of
neural networks architectures and various training
algorithms, but right now there is only one possibility
for choosing: ssNN for the neural network
architecture and a modified random optimization
method for the training algorithm. In future versions,
this will be augmented with other architectures and
algorithms.

As the ssNN is composed of five layers, as explained
in section 2.2, one has to enter the number of neurons
(Fig. 4) for first and second hidden layer, as well as
for the state layer. Besides, as neurons contained in
hidden layers may have nonlinear transfer functions,
one has to select what kind of function they have.

Another parameter is the data interval to be used for
the training algorithm. This has two goals: first, as
ssNN is a recurrent network, it is possible that the
initial dynamic behaviour is different from the model,
so the first samples should not be considered; and
second, maybe one desires to preserve some of the
data for validation purposes.

Finally, the parameters for the training algorithm
must be provided. Once it is done, one has to push the
“Train new network” button, so the training
procedure begins. Evolution of the error along the
training epochs is plotted, so one can see if training is
being successful. Another possibility, once the
algorithm has finished, is to compare the data with the
response of the ssNN (Fig. 5). It is possible, that, after
that, re-training is necessary. In this case, there is
button labelled “Train again” that continues the
training from the last set of weights obtained.

Fig. 4. Third step: definition of the neural network
architecture and parameters of the training
algorithm.

Fig. 5. Identification inputs (above) and comparison
between the real outputs and ssNN outputs
(below).

3.4 Steady state as initial condition

For applying the control algorithm to the simulink
model, it is desirable that the plant be in steady state
at the beginning of the simulation. This is the goal of
the fourth step of the toolbox. As the steady state of
the model depends on the value of the inputs, the user
has to introduce the value of every input as well as
the desired accuracy of the steady state and the
maximum number of iterations. With these data, the
toolbox simulates the model until the steady state is
reached.

3.5 Control

The last step is the application of the neural predictive
controller based on the predictions provided by the
ssNN previously designed to the simulink model
representing the plant.

Fig. 6. Fifth step: NPC parameters.

All the parameters (Fig. 6) explained in section 2.1
have to be provided for every manipulated variable
and every controlled or constrained output. The
functionality is complete, including the possibility of
simulating faults in sensors or actuators through the
availability buttons. The set-point for every controlled
output can be chosen with the number of steps desired
by the user. Once all the parameters have been
introduced, the user can run the simulation in closed
loop.

3.6 Exploiting the results

The toolbox provides another possibilities like
plotting and saving to disk several signals like
input/output data for the identification, neural
network response to the same pattern that the model,
manipulated variables provided by the NPC, set-
point, and, of course, evolution of controlled variables
(Fig. 7).

There are two stages where the toolbox may require
significant calculation time: training of the neural
network and NPC application. In both cases, the
optimization problem is time consuming. For
flexibility, the user can save the current session and
load it afterwards.

Fig. 7. Viewing results of the control algorithm.

4. COMPARISON WITH OTHER SIMILAR
TOOLS

There exist other neural predictive controllers
implemented as m-functions in Matlab. For example,
version 4.0 of the Neural Network Toolbox (Demouth
and Beale, 2001) implements a Simulink block called
NN Predictive Controller. This block gives access to
the identification phase, but only the identification of
a neural network ARX model is possible. Another
limitation of the controller is that N1 is fixed at 1 and
only SISO models can be controlled with this block,
which is a severe constraint since the main
applicability of predictive control in industry is for
multivariable processes.

Another toolkit called NNCTRL toolkit (Norgaard,
2000) also includes a Nonlinear Generalized
Predictive Control based on Neural Networks. This
toolkit is an add-on to the NNSYSID toolbox, which
is a toolbox for system identification with neural
networks. The toolkit does not provide a graphical
user interface for designing the controller.
Identification and control phases are accomplished
independently, though the neural network model
obtained at the identification phase can be used in the
controller directly. For configuration of the controller,
the user has to modify an initialization ASCII file
which acts as a framework where the user writes the
design parameters, experiment definition, etc. With
respect to the predictive controller implemented in the
toolkit, there are two versions called npccon1 which
uses a Quasi-Newton method for optimization, and
npccon2 which uses a Newton-based Levenberg-
Marquardt method. The toolkit is intended to be used
on SISO processes which can be a handicap in the
application to a multivariable process.

In summary, the neural predictive control toolbox
presented in this paper is flexible enough to
accommodate other neural networks models and/or
training algorithms, is easy to use through the
graphical user interface and can be applied to MIMO
processes. This last characteristic cannot be found in
other similar products, as known by the author.

4. CONCLUSION

This paper has described a neural predictive control
toolbox1 developed in the Matlab/Simulink
environment. The toolbox provides an easy way to do
the design and validation of the NPC through
simulation. The interface is divided in five windows
that match the five steps required to design the NPC.
The interface is easy to use and intuitive.

Programming of the application had in mind the
possibility of improving its characteristics. In
particular, adding a new neural network architecture

1 Download at http://www.isa.cie.uva.es/productos/

or a new training algorithm will be easy. This will be
accomplished as future work.

ACKNOWLEDGEMENTS

The author wants to express his gratitude to Julio
Fernández and Andrés Mañanes for their work in the
Matlab programming, and also to the support
obtained from CICYT through the project PPQ2000-
1075-C02-01.

REFERENCES

Baba, N. (1989). A new approach for finding the

global minimum of error function of neural
networks. Neural Networks, 2, 367-373.

Bhat, N., T.J. McAvoy (1989). Use of neural network
for dynamic modelling and control of chemical
process systems. American Control Conference,
Pittsburg.

Camacho, E.F. and C. Bordons (1995). Model
predictive control in the process industry.
Springer, London.

Clarke, D.W., C. Mohtadi, P.S. Tuffs (1987).
Generalized predictive control – part I. The basic
algorithm; Part II. Extensions and interpretations.
Automatica, 23, 137-160.

De Keyser, R. (1991). Basic Principles of MBPC.
European Control Conference, Grenoble.

Demuth H., M. Beale (2001). Neural Network
Toolbox User's Guide. The MatWorks, Inc.

Garcia, C.E., D.M. Prett, M. Morari (1989). Model
predictive control: theory and practice – a survey.
Automatica, 25, 335-348.

Hoekstra, J., R. Kooijman (1991). Recurrence with
delayed links in multilayer networks for
processing sequential data. International
Conference on Artificial Neural Networks,
Espoo.

Hornik, K., M. Stinchcombe, H. White (1989).
Multilayer feedforward networks are universal
approximators. Neural Networks, 2, 359-366.

Hunt, K.J., D. Sbarbaro, R. Zbikowski, P.J. Gawthrop
(1992). Neural networks for control systems – a
survey. Automatica, 28, 1083-1112.

Ljung, L. (1987). System identification. Theory for
the user. Prentice Hall, New Jersey.

Norgaard M. (2000). Neural Network Based Control
System Design Toolkit, ver. 2. Technical Report
00-E-892, Department of Automation, Technical
University of Denmark.

Richalet, J. (1993). Industrial applications of model
based predictive control. Automatica, 29, 1251-
1274.

Williams, R.J. (1990). Adaptive state representation
and estimation using recurrent connectionist
networks. In: Neural Networks for Control (W.T.
I.I.I. Miller, R.S. Sutton, P.J. Werbos (Ed)), 97-
114. The MIT Press, Cambridge, MA.

Zamarreño J.M., P. Vega (1996). Neural predictive
control. Application to a highly non-linear

system. 13th World Congress International
Federation of Automatic Control, San Francisco.

Zamarreño J.M., P. Vega (1997). Identification and
predictive control of a melter unit used in the
sugar industry. Artificial Intelligence in
Engineering, 11, 365-373.

Zamarreño J.M., P. Vega (1998). State space neural
network. Properties and application. Neural
Networks, 11, 1099-1112.

Zamarreño J.M., P. Vega (1999). Neural predictive
control. Application to a highly non-linear
system. Engineering Applications of Artificial
Intelligence, 12, 149-158.

