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Abstract: This paper presents a new methodology for friction compensation that is
not based on any friction model. This is done by using finite-terms Fourier series
to approximate the friction term. Updating laws for the coefficients of the series
are easily derived from a Lyapunov approach to guarantee asymptotic convergence
of the tracking error. Computer simulations are then proposed in which friction
term is generated by existing models (unknown to the controller) to illustrate the
efficiency of the proposed approach in compensating friction effects without friction
model. Extension to the case of unknown inertia is also proposed. Robustness against
velocity measurement errors is investigated by simulation showing better robustness
than existing model-based schemes.
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1. INTRODUCTION

Friction is a highly nonlinear inevitable phe-
nomenon that causes deterioration in the perfor-
mance of mechanical systems at low velocities.
That is why intensive researches have been de-
voted to design friction compensation schemes.
Almost all of these are model-based schemes
trying to estimate some friction model param-
eters (Canudas-de Wit et al., 1995; Bai, 1997;
Canudas de Wit and Lischinsky, 1997; Olsson et
al., 1998; Armstrong-Helouvry et al., 1994; Swev-
ers et al., 2000; Liaw and Huang, 1998)).
Since faithful model of such a nonlinear complex
phenomenon need to be so, adaptive schemes be-
come more and more complicated to built. The
key point of this work is to remark that 1) faithful
friction models can never be really found and 2)
friction term appearing in the related problems is
bounded and clearly meets the Dirichlet’s condi-
tions. It can therefore be well approximated by
Fourier series expansion.
Based on this idea, a free-model compensation
scheme is proposed that may in addition han-

dle unknown system’s inertia. performance and
robustness (against inertia uncertainties and/or
velocity measurement errors) of the controller so-
obtained are tested by simulation and compared
to the result of (Canudas de Wit and Lischin-
sky, 1997) that can fairly be considered as a very
good representative of model-based friction com-
pensation schemes.

2. PROBLEM STATEMENT

the dynamics of the process in which the friction
is present is assumed to be represented by

mẍ = −F + u (1)

where m is the mass, F the friction force, u is
the actuator force and x is the position to be
controlled. It goes without saying that (1) can be
directly used in the case of angular control with
m replaced by the moment of inertia J and u
representing the torque.
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The control objective is to track a given reference
signal xr in the following two cases :

• standard problem: The mass m is per-
fectly known.
• Problem with unknown mass: Only a

lower bound m on the mass is given, that
is m ≥ m.

Solutions for the two above problems are pre-
sented in sections 4 and 5 and the resulting two
controllers are denoted Controller#1 and Con-
troller#2 respectively. These solutions resort to
Fourier series expansions, that is why the follow-
ing section recalls some related facts.

3. FUNCTION APPROXIMATION BY
FOURIER SERIES

Any piecewise continuous real-valued function
f(t) satisfying the Dirichlet’s conditions may
be represented within any finite time-interval
of length T by a Fourier series of the form
(Hildebrand, 1976) :

f(t) = a0 +
∞∑
i=1

(
ai cosωit+ bi sinωit

)
(2)

where ωi := 2iπ/T (i ∈ N). The values ai, bi are
called the Fourier coefficients. Now, putting :

ZF (t) :=

[
1, cosω1t, sinω1t, . . . , cosωnF t, sinωnF t

]T
(3)

Wf :=

[
a0, a1, b1, . . . , anF , bnF

]
∈ R2nF+1 (4)

equation (2) can be rewritten in the following
form f(t) = WT

f ZF (t)+ε(t) where ε(t) is the error
due to the truncation satisfying (Rudin, 1976) :

|ε| ≤
∑
i>nF

(|ai|+ |bi|)

and since |ai| and |bi| are directly linked to the
signal’s energy at the corresponding frequency
2iπ/T , taking nF sufficiently large ensures small
approximation error ε since any physical signal is
necessary practically band limited.

4. SOLUTION FOR THE STANDARD
PROBLEM (CONTROLLER#1)

Let us denote the tracking error by e := x − xr.
Consider the stabilizing surface :

S = ė+ λee ; λe > 0

computing the time-derivative of S gives

Ṡ = −F
m

+
1
m
u− ẍr + λe(v − ẋr) (5)

therefore, if one has a good estimation F̂1 of
F1 := F

m , a suitable stabilizing feedback may be
given by :

u = m
[
F̂1 + ẍr − λe(v − ẋr)− λsS

]
(6)

since (6) imposes the following dynamics on S :

Ṡ = F̂1 − F1 − λsS (7)

Now, suppose that nF is chosen sufficiently large
for the following to hold with good precision :

F1(t) = WT
F1
ZF (t) ; WF1 ∈ R2nF+1(fixed)(8)

using the following parameterization for F̂1 :

F̂1 := WT
F̂1

(t)ZF (t) ; WF̂1
∈ R2nF+1 (9)

equation (7) becomes :

Ṡ =
[
WF̂1

−WF1

]T
ZF − λsS =: W̃T

F1
ZF − λsS

where W̃F1 := WF̂1
−WF1 . Now, let us consider

the following nonnegative function :

V :=
1
2
S2 +

1
2
W̃T
F1
QF W̃F1 (10)

and compute its time derivative under the control
(6) in which (9) is injected :

V̇ = W̃T
F1

[
SZF +QF

˙̃WF1

]
− λsS2 (11)

and using the fact that ˙̃WF1 = ẆF̂1
, (11) be-

comes :

V̇ = W̃T
F1

[
SZF +QF ẆF̂1

]
− λsS2 (12)

This suggests the following updating law for WF̂1
:

ẆF̂1
= −SQ−1

F ZF (t) (13)

Indeed, with this updating law, one has :

V̇ = −λsS2 (14)

which implies by the invariance principle that
limt→∞ S = 0 and hence limt→∞ e = 0.
To sum up, the solution of the standard friction
compensation problem is given by the following
dynamic output feedback :

u = m
[
WT
F̂1
ZF + ẍr − λe(v − ẋr)− λsS

]
ẆF̂1

= −SQ−1
F ZF (t)

S := (v − ẋr) + λe(x− xr)



4.1 Validation of the standard problem’s solution
(Controller#1)

In this section, comparisons are done with the
compensation scheme proposed in (Canudas de
Wit and Lischinsky, 1997) that may be fairly
considered as a good representative of model-
based compensation schemes.

4.1.1. Description of the simulations protocol
Several kind of reference trajectories have been
successfully tested (squared signal, sinusoidal,
. . . etc.) Because of the lack of space however,
only the signal proposed in (Canudas de Wit and
Lischinsky, 1997) is used with a lower amplitude
in order to obtain very low velocities :

xr(t) = 0.05 sin(2πt/5) sin(2πt/100) (15)

The friction model’s structure used in the simu-
lation is the one used to design the compensation
scheme in (Canudas de Wit and Lischinsky, 1997),
namely :

ż = v − σ0

α0 + α1e(−v/v0)2 z|v| (16)

F = σ0z + σ1
dz

dt
+ α2v (17)

In (Canudas de Wit and Lischinsky, 1997), two
one-parameter based adaptive friction compensa-
tion schemes have been proposed to handle either
variations in only the static parameters (σ0,σ1) or
variations in all the friction parameters appearing
in (16)-(17).

Since in the two proposed schemes, only one-
parameter based adaptation is used, one may ex-
pect that when all the friction model’s parameters
(σ0,σ1, α0, α1, and α2) indeed change, the adap-
tive compensation scheme of (Canudas de Wit and
Lischinsky, 1997) performs less better that in the
case where only σ0 and σ1 change while all the
others are supposed to be perfectly known.

Based on the above discussion, the case where
only static friction parameters σ0 and σ1 is
chosen in the comparison in order to favour
the model-based friction compensation scheme of
(Canudas de Wit and Lischinsky, 1997). Note that
This scheme is already favoured by the use of
the friction model’s structure it uses in its own
design. Indeed, it has been shown in (Swevers
et al., 2000; Armstrong, 1995) that the fric-
tion model (16)-(17), while globally satisfactory,
still presents some shortcomings preventing the
accurate prediction of friction behaviour under
some circumstances (over-dissipativity in preslid-
ing, fixed transition curve shape).

The nominal values for the friction model pa-
rameters have been taken equal to those used in
(Canudas de Wit and Lischinsky, 1997), namely :
αnom0 = 0.285, αnom1 = 0.05, αnom2 = 0.01,
vnom0 = 0.01, σnom0 = 260 and σnom1 = 0.6 while
dependance w.r.t the velocity sign has been intro-
duced according to the table I of the same paper.

The parameter values of the compensation scheme
given in (Canudas de Wit and Lischinsky, 1997)
have been used, namely ω0 = 20, ξ = 0.999, n =
1.2, k = 1, γ = 10. Note that ω0, ξ and n are used
to tune the PID related terms in the compensation
action.

The friction model has been slightly detuned by
changing only σ0 and σ1 by +30% and +5%
respectively. All the other friction model’s pa-
rameters are supposed to be exactly known by
the model-based compensation controller while
the free-model compensation scheme proposed in
this paper ignores naturally everything about the
friction model used to generate the friction term
in the simulations. The free-model compensation
scheme used the following parameters for all the
related experiments T = 25, nF = 10, QF =
0.001, λe = λs = 50

4.1.2. Simulation Results and discussion Figure
1 shows the tracking performances for the PID
without compensation (a), the detuned model-
based controller of (Canudas de Wit and Lischin-
sky, 1997) (b) and the free-model compensator
(Controller#1) proposed in the preceding section
(c). Friction force estimations of both the model-
based controller and the free-model compensation
scheme (Controller#1) are shown on Figure 2.
Finally, Figure 3 shows evolution of some of the
Fourier coefficients vector WF̂ = mWF̂1

.
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Fig. 1. Comparison of controllers performances

As expected, when low velocities arise (v ≈ 0),
tracking error increases in the absence of friction
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Fig. 3. Some of the components of the Fourier
coefficient vector WF̂ = mWF̂1

compensation while it is maintained equally small
by both nonlinear model-based and free-model
controller.
Examination of Figure 2 shows that the free-
model controller possesses an excellent friction
estimation capacity since the friction estimation
error remains in the neighborhood of 0.

5. SOLUTION FOR THE FRICTION
COMPENSATION PROBLEM WITH

UNKNOWN INERTIA (CONTROLLER#2)

In this section, the mass (or the moment of inertia
for rotating systems) is supposed to be unknown.
Only a lower bound m of m is given such that :
m ≥ m. Using the notations of section 4, equation
(5) is still valid :

Ṡ =
1
m

[
−F + u−m

(
ẍr − λe(v − ẋr)

)]
(18)

In order to simplify the expressions, the following
notation is used for the measured quantity E :=
ẍr − λe(v − ẋr) so that (18) becomes

Ṡ =
1
m

[
−F + u−mE

]
(19)

giving rise to the following control strategy

u = F̂ + m̂E − m̂λsS (20)

where m̂ and F̂ are some instantaneous estima-
tions of m and F respectively. Using (20) in (19)
gives

Ṡ =
1
m

[
W̃T
F ZF + W̃mE − m̂λsS

]
(21)

where, following the terminology of section 4,
F̂ = WT

F̂
ZF , W̃F := WF̂ −WF and W̃m := m̂−m.

Now consider the nonnegative function V given
by :

V =
1
2
S2 +

1
2m

[
W̃FQF W̃F + qmW̃

2
m

]
(22)

where QF ∈ R
(2nF+1)×(2nF+1) and qm ∈ R

are positive definite. After rather straightforward
manipulations, it can be shown that computing
the time derivative of V suggests the following
solution of the friction compensation problem
with unknown inertia :

u = WT
F̂
ZF + m̂[ẍr − λe(v − ẋr)]− m̂λsS

ẆF̂ = −
(
Q−1
F ZF

)
S

˙̂m =

{−SE/qm if m̂ > m
0 if m̂ = m and SE < 0

−SE/qm if m̂ = m and SE ≥ 0
E = ẍr − λe(v − ẋr)
S := (v − ẋr) + λe(x− xr)

6. VALIDATION OF THE FREE-MODEL
CONTROLLER UNDER UNKNOWN INERTIA

In this section, simulations are proposed to first
illustrate the efficiency of the solution proposed in
section 5 in handling uncertainties on the system’s
inertia and then to investigate the robustness of
the controllers proposed in both sections 4 and 5
against velocity measurement errors. This is done
while comparing the performances of these two
controllers to that of the detuned model-based
controller that has been used in section 4.

For easy references, the controllers proposed in
sections 4 and 5 are denoted by Controller#1 and
Controller#2 respectively.

X Simulations with erroneous mass and

perfect velocity measurements [Fig-
ures 4 and 5]

In this simulation, the effective mass m used
in the simulation is 4 times greater than
the nominal mass mnom used in all the con-
trollers (as a constant value in the detuned
model-based controller#1 and as an initial
value of m̂ in controller#2)

m = 4×mnom = 4× 0.0022

Figure 4 shows the performances of the three
controllers. The order of magnitude of the
tracking error corresponding to the Con-
troller#2 is (∼ 10−6) while that of the



detuned model-based controller and Con-
troller#1 is (∼ 10−3).

Figure 5 shows the evolution of the esti-
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Fig. 4. Comparison of controllers performances
under perfect velocity measurements with
erroneous nominal mass mnom (true mass
m = 4×mnom)

mated mass m̂ used by Controller#2. Note
that the result of section 5 do not guarantee
the convergence of m̂ to m but only the
convergence of the tracking error.

This simulation suggests that the mass adap-
tation mechanism included in free-model
Controller#2 enables a noticeable improve-
ment of the tracking performances.
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Fig. 5. Evolution of the estimated mass m̂ used by
Controller#2 using perfect velocity measure-
ments and erroneous initial estimated mass
m̂(0) = 0.25m

X Simulations with erroneous mass and

unperfect velocity measurements :

Case of absolute error [Figures 6-7]

In this simulation, an absolute measurement
error is introduced such that :

vm = v − εv ; εv = 0.005 (23)

where v = ẋ is the true velocity while vm is
the measured velocity used by the controllers.

This simulates a constant sensor offset. The
error on the mass is maintained as in the
preceding simulation. Figure 6 shows the per-
formances of the three controllers. This sim-
ulation suggests that free-model controllers
#1 and #2 are more robust to offset-like
velocity measurements errors that the model-
based controller.

Figure 7 shows the behaviour of the esti-
mated mass m̂ used by Controller#2 during
this experiment.
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Fig. 6. Comparison of controllers performances
with erroneous nominal mass mnom (true
mass m = 4×mnom) and the constant offset
error (23) on velocity measurements
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Fig. 7. Evolution of the estimated mass m̂ used
by Controller#2 with erroneous mass mnom

(true mass m = 4×mnom) and the constant
offset error (23) on the velocity measure

X Simulations with erroneous mass and

unperfect velocity measurements :

Case of relative error [Figure 8]

In this last experiment, a relative error is
used on velocity measurements, namely

vm = (1 + εv)v ; εv = 0.15 (24)

Results are presented on Figure 8.
X Good performances are not due to

the periodic nature of the reference

signal. It may be thought that good per-
formance are linked to the periodic nature of
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Fig. 8. Comparison of controllers performances
with erroneous nominal mass mnom (true
mass m = 4 ×mnom) and relative measure-
ment error given by (24) on velocity measure-
ments
the reference signal. This periodicity makes
Fourier series approximation working. This
objection may be rejected by underlying that
in the above experiment T = 25 s is not the
signal period. But since it still be a particular
value (half a period) experiments have been
remade with T = 28 s and the same level
of performance has been observed. Figure 9
shows an example of the results so obtained.
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Fig. 9. The same experiment than that of Figure 8
with T = 28. Good performances are not due
to the periodic nature of the reference signal.

7. CONCLUSION

In this paper, a free-model friction compensation
scheme is proposed based on Fourier series expan-
sion of the unknown friction term. Updating laws
for the Fourier series coefficients are obtained by
Lyapunov approach. This yields a dynamic output
feedback. Tracking performances of the free-model

controllers so-obtained have been compared to
an existing and widely appreciated model-based
nonlinear adaptive controller (Canudas de Wit
and Lischinsky, 1997). Comparison shows that the
free-model controllers performs at least equally
well in the absence of mass uncertainty and using
perfect velocity measures and much better when
uncertainties on system’s inertia and/or errors on
velocity measurement are introduced.

To sum up, model-free compensation schemes pre-
sented in this paper seems to be very promising
from both performance, robustness and imple-
mentation point of view since no friction model is
needed nor preliminary identification experiments
are necessary.
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