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Abstract: Consider the problem of estimating the parameters in a continuous-time
autoregressive (CAR) model from discrete-time samples. In this paper a simple
and computationally efficient method is introduced, and analyzed with respect
to bias distribution. The approach is based on replacing the derivatives by delta
approximations, forming a linear regression, and using the least squares method. It
turns out that consistency can be assured by applying a particular prefilter to the data;
the filter is easy to compute and is only dependent on the order of the continuous-
time system. Finally, the introduced method is compared to other methods in some

simulation studies.
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1. INTRODUCTION

The problem of continuous-time system identifi-
cation is of fundamental importance in such ar-
eas as economics, astrophysics, control and signal
processing (Parzen, 1984; Phadke and Wu, 1974;
Sinha and Rao, 1991). There exist a variety of
different techniques for identifying a continuous-
time system. The surveys (Young, 1981; Unbe-
hauen and Rao, 1990) and the books (Sinha and
Rao, 1991; Unbehauen and Rao, 1987) offer broad
overviews of many of the available techniques.

One particularly interesting and practical scenario
is identification of continuous-time systems using
discrete-time data. The objective of this paper is
to present a least squares solution to the problem
of estimating the parameters in a continuous-time
autoregressive (CAR) model from discrete-time
measurements. A natural question concerns the
relevance of studying processes with a pure AR-
structure, as it seems quite restrictive. However,
there are several examples of the applicability

of AR-models, including: astrophysics (Phadke
and Wu, 1974), economics (Going, 1996) and
biomedicine (Mateo and Laguna, 2000). More-
over, the results herein seem to be extendable to
the case where an input is present as well. Here we
will consider a direct approach, where the differ-
entiation operator is replaced by the well known
delta forward operator. In this fashion the model
is casted into a discrete-time linear regression.
Some possible advantages of such an approach
include: it is numerically sound, especially for fast
sampling, and it is computationally very efficient.

This setup has been used in various papers, for in-
stance, (Bigi et al., 1994; Soderstrom et al., 1997b;
Soderstrom et al., 1997¢) and it is well known that
an ordinary least squares estimate in general will
be severely biased. In the above mentioned papers,
this problem is cured by either modifying the least
squares method, or by restricting the derivative
approximation schemes. However, in this paper
it is shown that it is possible to use the simple
delta operator, and the ordinary least squares



method, and still get consistent estimates by ap-
plying a particular prefilter to the data. The filter
is easy to compute and it depends only on the
order of the continuous-time system. To be more
precise, the filter is given by the limiting noise
shaping filter for the sampled version of the orig-
inal continuous-time system. Limiting properties
for sampled systems have been treated in several
papers; for transfer functions, see, e.g., (Astrém
et al., 1984; Blachuta, 1999), and for stochastic
processes, see, e.g., (Wahlberg, 1988). Moreover,
under some weak assumptions we provide some
explicit formulas for quantifying the bias for the
derived method. This will be helpful when trying
to compare the method derived in this paper to
other methods. By means of numerical examples
the introduced method is compared to some sim-
ilar methods (Bigi et al., 1994; Soderstrom et
al., 1997b; Soderstrém et al., 1997¢), and shown
to work well. The main differences between our
approach and other direct methods available in
the literature, see, e.g., (Sinha and Rao, 1991; Un-
behauen and Rao, 1987) are twofold: Firstly,
they differ in how the system of parameter es-
timation equations is formulated from the origi-
nal continuous-time system. Here we use the -
operator, while other choices might be to use some
integral approach or some modulating functions
approach. Secondly, in this paper we treat the
case of a continuous-time white noise source, while
many other methods simply ignore the noise, or
assume it to be discrete-time white noise.

2. PROBLEM FORMULATION

Consider a stable continuous-time autoregressive
(CAR) process

Ac(p)y(t) = ec(t)

E{ec(t)ec(s)} = N2d(t — s) (1)

where y(t) is the output, e.(t) is a continuous-
time white noise source with intensity A2, §(7) is
Dirac’s §-function and A.(p) is defined as

Ac(p) :pn + alpn_l +rtan
L 2
=1l )
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Here p = % denotes the differentiation operator
and {p;} are the zeros of A.(p). Note that by (1) is
meant a stochastic process with power spectrum

A

(9) = 5 au(=s) ®)

For a rigorous treatment of continuous-time stochas-

tic processes see, e.g., (Astrom, 1970; Soderstrom,
1994). The time series (1) is observed at t = hk,
for k=1,2,...,N. The model order n is assumed

to be known. The problem is how to estimate the
true parameter vector

00 = [a1 .. an]T (4)

from the available discrete-time data in a simple
and computationally efficient manner.

Before we describe the approach here taken
and state the main results, some preliminary is-
sues concerning sampling of continuous-time AR-
processes will be addressed; this in order to pro-
vide some answers required in the analysis to
follow in Section 4.

3. PRELIMINARIES

Assume that the time series (1) is instantaneously
sampled at t, = hk, for ¥ = 1,2,...,N. The
discrete-time stochastic process {y(tx)}i, is then
a sequence of stochastic variables with the same
second order properties as the continuous-time
system (1) at the time instances ¢ = t;. The
discrete-time system representation, correspond-
ing to the continuous-time system (1), turns out
to be given by an autoregressive moving aver-
age (ARMA) process, see, e.g., (Astrom, 1970;
Wabhlberg et al., 1993)

Aa(@)y(te) = Calg)e(tr)
Efe(tr)e(ts)} = Xidk,s
where e(ty) is discrete-time white noise with vari-

ance A}, and Cq(g) and A4(q) are stable polyno-
mials of degree n given as

(5)

Cal) =2 [ = — =) 6)
=1
Aq(z) = H(z - q) (7)

Note that even though the continuous-time sys-
tem has relative degree n, the sampled version
will have relative degree zero (or, relative degree
one if a time delay is included in Cy(2)). For
an interesting discussion around this issue, see
(Wahlberg, 1990).

Given a continuous-time system (1), it is in gen-
eral a tedious procedure to find the discrete-time
representation (5). Hence, it would be desirable
to have some simple mappings between the sys-
tem descriptions (1) and (5). In particular, we
would like to be able to express the polynomials
Aq4(q) and Cy(q) in terms of the parameters of the
continuous-time system (1).

It is well known that the zeros of A4(q) and A.(p)
are related according to

i = ePih (8)



By introducing the delta operator

qg—1
0= —— 9
- )
the above relation allow us to establish a sim-
ple, but useful mapping between A.(d) and
Aq(q). It holds that (Larsson, 2001; Larsson and
Soderstrom, 2001)

Aa(q) = K" Ac(8) + O(h?) (10)

Unfortunately, there are in general no simple
closed form expressions for the zeros of Cy(gq). The
limiting case for small sampling periods (h — 0)
can, however, be characterized. It turns out that
for a system with relative degree mn, the Cy(q)
polynomial converges to a constant polynomial
Cr(q), which is only dependent on the order of
the system and not on the continuous-time sys-
tem parameters as the sampling interval goes to
zero (Wahlberg, 1988). In (Larsson, 2001; Larsson
and Soderstrom, 2001) this result is extended to
include expressions for the h and h? coefficients
in a series expansion of the zeros of Cy(g), in
terms of the parameters of the continuous-time
system. In particular, as a result of Lemma 3.1 in
(Larsson, 2001; Larsson and Soderstrém, 2001), it
follows that Cy(z), defined in (6), can be written
as

Ca(2) = Ch(2) + C(2) (11)

where
i) == [ =) (12

and C(z) = O(h?). The interpretation of C(z) =
O(h?) is that all the coefficients of C(z) are of
order O(h?). Moreover, it turns out that the roots
{#{} are the n—1 roots of Bay_1 () inside the unit

circle, where the n — 1 order polynomial B,(z) is
defined as:

Bn(z) = b7zt 4+ 052" 2 + -+ b7 (13)
with the coeflicients b} given by

k

n __ k—ln n+]‘ —
r=3 1) l(k—l)’ F=1,...

=1

,n (14)

or recursively computed as (Astrém et al., 1984)

nopn= 1 (15)

n

w=kb - (n—k+1)bY ] (16)

4. LS PARAMETER ESTIMATION

Reconsider the continuous-time AR process de-
fined in (1)-(3), where the time series is observed
at ty, = hk, for kK = 1,2,...,N. It is of interest
to estimate the parameter vector (4) from the
available data.

As a first step the outputs y(tx) are filtered by
means of an IIR filter

yF () = =—y(t),

20 k=1,....N (17

where F(q) is a stable polynomial of degree n, yet
to be specified. Next, the differentiation operator
p? in (2) is approximated by the delta operator

pimsﬂ'é[q;l]j, j=1,...,n  (18)

Notice that this approximation fulfills what is
referred to as the natural conditions in e.g.,
(Soderstrom et al., 1997b). In other words, the
approximation error in (18) is of order O(h). After
substituting the derivatives in (2) by approxi-
mations (18) and filtering the outputs (17), the
following linear regression model can be formed

wr(tr) = e ()0 + &(t)

wr(ty) = 6"y" ()

@r(tr) = [-6" 1y  (te) ... — %" (ta)]
0=1[ar--a,)"

(19)

The parameter vector 0 is estimated by a standard
least squares method,

N
oy = Ry [+ Y erltur®)]  (20)
) v t=1
Ry & ) or(ti)eh(t) (21)
t=1

which in the asymptotic case (N — o) can be
written as, cf. (S6derstrom and Stoica, 1989)

=R 'r (22)

where
R 2 E{erp(tr)er(tr)} (23)
r = E{op(tr)wr(ty)} (24)

The least squares estimate (22) will in general give
rise to estimates with a severe bias, also for h
small. In the case where F'(q) = 1 there are several
papers published that deal with this problem,
see, e.g., (Soderstrém et al., 1997b; Soderstrém
et al., 1997¢). In those papers consistency (an
estimate of @ with a small bias of order O(h))
is assured by either modifying the LS-method, or
by introducing some restrictions on the derivative
approximation schemes. Here we will show that it
is possible to use the simple delta approximation
and the conceptually clear LS method, and still
get consistent estimate of @ by choosing the F(q)
polynomial in a proper way. The result is given in
the following lemma:

Lemma 1. If the polynomial F(q) in (17) is chosen
as

F(g) =Ch(9) (25)



where C}:(q) is defined in equation (12), then the
least squares estimate (20) of @ fulfills

6 =600+ O(h) (26)

as N — oo.

PROOF. See (Larsson and Soderstrom, 2001;
Larsson, 2001). O

An intuitive explanation of the method is as
follows: as seen from (5) and (11) the choice
F(q) = C(q) corresponds to the limiting (h — 0)
noise shaping filter for the data generating system
(5). By recalling that Ag(q) = h"A.(8) + O(h?),
this means that the filtered outputs obey

h"A:(B)y" (t) = e(tr) + O(R)  (27)

where e(tr)) is a discrete-time white noise se-
quence. Hence, we observe that the troublesome
C4(q) polynomial has “disappeared”, and there-
fore should an ordinary LS method give consistent
estimates. What is not directly clear from (27), is
how the O(h?) term will effect the estimate.

In order to measure the performance of the
method, and to be able to compare it to other
methods it would be desirable to have an analytic
expression for the dominating bias term. Note
that by series expansions in h we can write

6 = 6y + Oh + O(h?) (28)
R=Ry+0(h) (29)
r =19+ O(h) (30)
€2 ROy —r =eoh+ O(h?) (31)

The following lemma then provides the answer:

Lemma 2. Let {p;}_, denote the zeros of A.(p),
defined in (2). It holds that

0= —REIEO (32)

where, under the assumption that the zeros {p;}
are distinct, the (n—i,n— j)th element of Ry, and
the (n — j)th element of gq fulfills
n i+j—1
i Tn Dy
Roln_iny = (-S> P
n—i,n—j 2 lzzlnk;ﬁl(p?_p%)

(33)
Tn - p; - pi

E0|ln—gF = ——
[ ]n ! 2 l:Zl Hk;ez(pl — Dk) w1 Pk +

(34)

for 0 <4,j <n—1, and with
1
(35)

=T

IS (=22

where {z}} are the n — 1 roots of By,_;(z) inside
the unit circle, see (13).

PROOF. See (Larsson, 2001). O

Remark 1. Notice that (32) still holds when the
zeros {p;} are not distinct. However, the ex-
pressions (33)-(34) have to be replaced. This re-
derivation will be more messy, at least taking the
approach used in (Larsson and Séderstrom, 2001;
Larsson, 2001). Moreover, it can be shown that
[Ro]n—in—j = 0 when ¢ + j is odd.

5. NUMERICAL EXAMPLES

In this section the performance of the method
introduced in Section 4 (referred to as M1) is
considered in some simulation studies.

Data were generated by instantaneous sampling
of the second order process

(P +a1p + a2)y(t) = e(t) (36)

where e(t) is a continuous-time white noise source
with unit incremental variance. Both a; and as
were equal to 2 and the process was observed
N = 10000 times. Each trial was repeated 200
times. In all simulations the sampling interval, h,
varied between 0.01 and 0.1.

Ezample 1. In the first example the parameters in
(36) were estimated using the method proposed in
Section 4. According to Lemma 1 the polynomial
F(q) = C$(q) = qlg — (=2 ++/3)]. The theoretical
estimate is found by solving the normal equations
(22) for fixed h. The estimate of ay is presented
in Figure 1, while the estimate of as is presented
in Figure 2. The results indicates that the bias for
a; is smaller than the bias for do; a result that
is theoretically supported by Lemma 2. In fact,
it turns out that the dominating bias term when
a; =ay =218

1, +

. —za7 T az 0

O = 21 = [_2]
—§a1a2

(37)

It is also clear from the figures that there is
a good match between the theoretical, and the
experimental values. Another observation is that
the estimation error variance is a monotonically
decreasing function with respect to h, as expected.
It is important to keep in mind that the total
length of identification measured in continuous-
time is Nh. Thus, for a fixed N, a larger h will
mean that we gain more insight of the system,
and therefore we can expect estimates with better
accuracy.

Ezample 2. In this example the method proposed
in this paper (M1) is compared to some existing
methods for direct identification of CAR models.
The other considered methods are:



M2 An instrumental variable (IV) method, with
delayed values of the output signal as instru-
ments. The method is described in (Bigi et
al., 1994).

M3 A least squares scheme, called the shifted
least squares (SLS) method, with a shift
structure for estimating the nth order deriva-
tive of y(t). The method is described in
(Soderstrom et al., 1997b).

M4 A least squares scheme, with a bias compen-
sation feature. The method is commonly ref-
ereed to as the bias compensated least squares
(BCLS), see (Soderstrom et al., 1997¢).

The setup for the different methods are the same
as described in (Soderstrom et al., 1997a).

The estimate of a; is presented in Figure 3, while
the estimate of as is presented in Figure 4. It
is clear from the figures that M1 and M2 give
the best estimates, while M3 seems to produce
the worst estimate. This is something that have
been theoretically supported. In this case it can
be shown that M1 and M2 have identically the
same dominating bias contribution. Moreover it is
seen from Figure 5 that all the methods give rise
to a similar, and small estimation error variance.
Indeed it has been shown (Soderstrom, 1999)
that the methods M2 - M4 are asymptotically
statistically efficient, i.e., they reach the CRB in
the limiting case when the sampling interval tends
to zero.

6. CONCLUSIONS

The problem of estimating continuous-time au-
toregressive models from discrete-time data, by
using limiting properties of sampled systems, has
been the focus of this paper. The approach taken
here consists of replacing the differentiation opera-
tor by the delta forward operator, forming a linear
regression model and solve it by using an ordinary
least squares scheme. To get parameter estimates
with negligible bias, we found that a sufficient
mean was to prefilter the discrete-time data by
a particular IIR filter. It turned out that the filter
was given by the limiting noise shaping filter for
the sampled version of the original continuous-
time system.

Some of the more pronounced advantages of the
introduced method, beside its intuitively clear
explanation, include: it is very easy to apply,
straightforward to implement and computation-
ally very efficient. The method has been theoret-
ically analyzed with respect to bias distribution,
and the derived expressions have been verified in
some simulation examples. Moreover, the method
has been compared with some other methods in
some simulation studies. The results indicate that

all the methods in general behaves similarly with
respect to bias distribution and estimation error
accuracy.
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Fig. 1. Estimation results for a;. True a; = 2.
(--+) - theoretical estimates. () - experimen-
tal estimates. The standard deviation of the
estimates are shown by the vertical lines.
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Fig. 2. Estimation results for as. True ay = 2.
(---) - theoretical estimates. (x) - experimen-
tal estimates. The standard deviation of the
estimates are shown by the vertical lines.
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Fig. 3. The estimate of a; for the four different
methods described in Example 2 as a function
of the sampling interval. True a; = 2.
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Fig. 4. The estimate of ay for the four different
methods described in Example 2 as a function
of the sampling interval. True ay = 2.
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Fig. 5. Estimation error variance for estimating
the parameter a; for the four different meth-
ods described in Example 2.



