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Abstract : This paper concerns with a new class of adaptive gain-scheduled Ho, control of
linear parameter-varying (LPV) systems. The plants in this manuscript are assumed to be
polytopic LPV systems, but the time-varying parameters in those plants are not available
for measurement, and thus, the conventional gain-scheduled control strategy cannot be
applied. In the proposed adaptive schemes, the estimates of those unknown parameters
are obtained successively, and the current estimates are fed to the controllers to stabilize
the plants and to attain H., control performance adaptively. Stability analysis of the
adaptive control systems is carried out by utilizing Lyapunov approaches based on linear

matrix inequalities in the bounded real lemma.
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1. INTRODUCTION

Recently, there has been much progress in the
field of gain-scheduled control of linear parameter-
varying (LPV) systems with guaranteed control
performances (Packard, 1994; Becker and Packard,
1994; Apkarian, et al., 1995; Apkarian and Gahinet,
1995; Gahinet, et al.,1996; Watanabe, et al., 1996).
Those results are based on linear matrix inequal-
ities (LMI) techniques in control engineering and
computation tools solving LMI. The general de-
scriptions of LPV systems, and specified forms
such as LFT parameter dependence and polytopic
system structures have been discussed in those
studies, and especially, the gain-scheduled control
schemes for polytopic LPV systems (Apkarian, et
al., 1995) has been one of the several standard
techniques with useful computation tools (Gahinet,
et al., 1995). However, in those approaches, the
time-varying process parameters are assumed to
be known a priori. Those parameters are fed to
the gain-scheduled controllers as scheduled vari-
ables to attain stability and certain control per-

formances. If those scheduled parameters are un-
known, or inaccurate, then even the stability of
the resulting control systems is not assured.

This paper concerns with a new class of adaptive
gain-scheduled H, control of LPV systems. The
plants in this manuscript are assumed to be poly-
topic LPV systems, but the time-varying parame-
ters in those plants are not available for measure-
ment, and thus, the conventional gain-scheduled
control strategy cannot be applied. In the pro-
posed adaptive schemes, the estimates of those un-
known parameters are obtained successively, and
the current estimates are fed to the controllers as
scheduled variables to stabilize the plants and to
attain H., control performance adaptively. Stabil-
ity analysis of the adaptive control systems is car-
ried out by utilizing Lyapunov approaches based
on LMI in the bounded real lemma.

2. GAIN-SCHEDULED H,, CONTROL OF
LPV SYSTEMS



The gain-scheduled H, control schemes for poly-
topic LPV systems (Apkarian, et al, 1995) are
reviewed, where time-varying parameters in those
systems are assumed to be available for measure-
ment.

2.1 Gain-Scheduled Control via State Feedback.

Consider the following LPV system

%1‘ = Ay(a)x + Byu + Bi(a)w, (1)
z = Ci(a)x + Da1u + Doz (a)w, (2)
where A,(a), Bi(a), C1(a), Daz(a) depend affinely

on the time-varying parameter a and satisfy
Ay(a) Bi(a) - Api By
= 3
[ Ci(a) Da(a) 21 C1i Da; |’ ®)
with time-invariant matrices A,;, Byi, C14, Daa;.

The parameter « ranges over a fixed polytope such
that

a= [a17 Q2, -, a"‘]T7 (4)
Y ai=1, ai>0. (5)

The control objective is to stabilize that polytopic
LPV system and to make Lo gain from distur-
bances w to generalized outputs z less than (> 0)
for all possible a. For that purpose, the following
gain-scheduled state feedback control is chosen.

u=F(a)z, (6)
F(a) = aiF}, (7)
i=1
where F; are time-invariant matrices. Then the
feedback system is described by
3 p = Aala)e + Bia)w, (®)
z = Cea(a)z + Dy (a)w, 9)
where
Aa(a) Bi(a) | _ . | Aci Bu
[ Co(a) Daz(a) | Za, Ceoi D2

i=1
<« [ 4:+B,F Bu
- ;a, [ C1i + D21 F;  Daa; ] ' (10)

The controlled system is stabilized and the £, gain
from w to z is made less than (> 0), if there
exists a positive definite matrix P satisfying the
following LMI for all possible a (5) (Bounded Real
Lemma).

|-Acl(a)TP+PACl(a) PBi(a) Cu(a)” ]

Bi(a)TP —yI  Das(a)”
[ Co(a) D () —~I J
{ AT.P+PAy; PBy CF, '|

= Z Q@ Bh I D;Fm
[ Cclz D22i _’YI J

<0. (11)

The condition (11) is equivalent to the existence of
the positive definite P satisfying the next systems
of LMIs (12).

AL.P+ PA.; PBy CZL,
BLP —~I DL, | <o, (12)
Ceri Doy;  —oI
1<i<r).

2.2 Gain-Scheduled Control via Dynamic Com-
pensator.

Consider the following polytopic LPV system

%m = Ap(a)z + Byu + Bi(a)w, (13)
y = Cpx + Disw, (14)
z = Ci(a)x + D21u + Das(a)w, (15)
where Ap(a), Bi(a), Ci(a), Daz(a) are defined
by
Ap(a) Bl(a) _ . Apz Bli
[ Ci(a) Dax(a) ] - Z [ Cii Dao; ]’ (16)

=1

with time-invariant matrices Apz', Bh’, Ch’, DQQZ',
and the time-varying parameter « satisfies the same
condition (5).

The control objective is to stabilize the process,
and make L5 gain from disturbance w to gener-
alized output z less than « (> 0), for all possible
a. For that purpose, the following gain-scheduled
dynamic compensator is introduced.

%mK = Ap(a)zx + Br(a)y, (17)
u = Cr(a)r + Dk (a)y, (18)

Ax(a) Br(a) | _~~_ [ Axi Bx:
[ Crk(a) Dg(a) |~ Zl Y| Cxi Dx: (19)
where Ak, Bki, Cki, Dk; are time-invariant ma-

trices. Then, the feedback system is written by

d

7 = Aci(@)ze + Ba(a)w, (20)

z = Co(@)zer + De(a)w, (21)

el = [ ] (22)

where

Aa(a) Bala) | _ - | Aci  Bew

[ Cu(a) Da(a) | ;al Cei Dei »(23)
. — APi + BpDKiCp BpCKz

e I el FECY

B, Dr; D12 + B

By = 7 s 25
! [ BkiD1o ] (25)

Ceti = [ Cii + D21 DiiCp D21 Cki ] , (26)

Dci; = D21 Dk D12 + Dao;i. (27)



The controlled process is stabilized, and L2 gain
from w to z is made less than (> 0), if there
exists a positive definite P satisfying the following
LMI for all possible a (5) (Bounded Real Lemma).

Ac(a)" P+ PAg(a) PBua(a) Ca(a)”
B.(a)TP —I  Da(a)”
Ca(e) Dei(ar) =1
AL. P+ PA.; PBa; CF,
=) a BIP —yI DI,
3 Cclz Dcli _’}/I
<0. (28)

The condition (28) is equivalent to the existence of
the positive definite P satisfying the next systems
of LMIs (29).

Al,P+PA.; PBu; CCTM
BclzP _’YI Dclz < O) (29)
Cclz Dcli _’)/I
1<i<r).

3. ADAPTIVE GAIN-SCHEDULED H,,
CONTROL OF LPV SYSTEMS

The adaptive gain-scheduled H,, controllers for
polytopic LPV systems are constructed for the
case where the parameter « is not available for
measurement. First, it is assumed that the param-
eter « is time-invariant, and that w € £* N £2,
W € L, and the basic structure of the proposed
adaptive control systems is shown.

3.1 Adaptive Gain-Scheduled Control via State
Feedback.

Consider the polytopic LPV system (1), (2), where
the system matrices A,;, Bys, C1i, Dagi (1 < 1),
By, D> are known, but the parameter a is not
available for measurement. The current estimate
of a is defined by &, and that estimate is fed to the
gain-scheduled state feedback controller as follows:

=F(a)r =Y a&Fu. (30)

Then, the controlled system is described by

™ T
T = E Oz,‘ACZ,"Z-‘rE a; Biw
i=1 i=1

+B, Z(di —«a;)Fiz, (31)
i=1
z = Z a;Coix + Z aiDa2iw
i=1 i=1
+D21 Y (& — ai)Fiz, (32)
i=1

Tt is assumed that the LMI (11), (12) is solvable
for the LPV system (1), (2), and there exists a

positive definite matrix P. The LMI (11) is di-
vided into the form
Al,P+ PA.; PByu CF;
> o BLP —yI DL,
i Ceui Dyy;  —~I
PAC[’L PBlz 0
= Z a; '2’I 0
Cclz Do2i  —31
PAu; PBy; 0 1"
+| o =21 o0 <0. (33)
Ceti Doy —2%I

Then, the following relation holds for any vector
z, w, d with proper dimensions and 61, 62, 63 > 0.

0> —61|z]|” — b2llwl|* — s]ldlI”

r PA.; PBy; 0
220@ [mTwTdT ] [
i=1

0 -2 0
Ceii  Da22i =31
=z"P (Z oAz + Z aiBliw>
i=1 i=1
T O . I
+d <Z azcclz-'t + Z a'LDZZzw 2 d>

i=1 i=1

— 2l (34)

By considering (31), (32), and by setting d as

z
d=—, 35
S (35)
the inequality (34) is rewritten into
2
0> —iljall® — Salloll® — 65 121
0l
> 2Tp {a: ~Bp ) (éi— ai)Fia:}
i=1
T 4 1
+ (%) {Z — Doy ;(di —«a;)Fix — 52}
2
—||w||2
= 55 PO+ 5l = Jllel”
2d 2
T
_Z i — Q4 {zTPBpEI'—F (%) DglF.;I'}.
(36)
Here, define the positive function W
W = 2" Pr+ = Z i —ai)?/gi, (37)

(g‘i > 0)3

and take the time derivative of it along the trajec-
tories of x and &;.

2dt($ P:L')—!—Z P — Q)& '/gi

5
< - L
< 5l + el



+Z
+Z

From that, the adaptive laws of &; are determined
as follows (1 <4 < r):

T
&i =—g; {;pTPBpFi.’t =+ (%) D21E$} . (39)

Then, W is evaluated such that

T
{x PB,F;x + <’y> D21.Fi{£}

P — oz,/g.L (38)

. 1
W< =gl + Sl (40)

and the next relation is obtained.

/0 (o) Par

+y ) {ai(t) — i} [gi +7a(t)" Pa(t)

<y / llw()I*dr + ’Yz{di(o) - ai}?/g;

+72(0)" P2(0). (41)

Hence, it is shown that z, z, &; € L>®; z, 2 —» 0
for w € L N L2, & € £, and that £, gain from
w to z is prescribed by <, where initial errors of
tuning parameters Y ;_,{a;(0) — a;}? are also in-
cluded (adaptive Hy, control performance).

Theorem 1 : [t is assumed that the LMI (11),
(12) is solvable for the LPV system (1), (2). Then,
the adaptive gain-scheduled control schemes (30),
(39) stabilize the process (x, z, &; € L; x, z —
0), and attain the adaptive Hy, control perfor-
mance (41), for time-invariant o and for w €
L2NL>®, 0 e L.

3.2 Adaptive Gain-Scheduled Control via Dynamic
Compensator.

Consider the polytopic LPV system (13), (14),
(15), where the system matrices Ay,;, B1i, Chii,
D22i (1 < T), Bp, Cp, D12, D21 are known, but
the parameter « is unknown. The current esti-
mate & is defined similarly, and & is fed to the
gain-scheduled dynamic compensators as follows:

%931( = Ay (&)zx + Br(&)y, (42)
u = Ci(&)x + Dk (&)y, (43)
Ax(&) Bg(&) | _ —~ [ Axi Bxi
Ck (&) Dxk(a) ] - ;ai [ Cki Drg; ] (49

Then, overall controlled process is written by

d
gl = Ac(@)ze + Ba(a)w

B,(Ckirk + Dkiy)

45
Agixrx + Briy (45)

+ Z(di — ;) [
2z = Ce(a)zer + Der(a)w

+ Z(di — a;)D2»1(Crixx + Dr:y). (46)
i=1
It is assumed that the LMI (28), (29) is solvable
for the LPV system (13), (14), (15) and there ex-
ists a positive definite matrix P. The LMI (28) is
divided into the form

r |V ACI,P+PA.:M PB.; Cg;i -|
. BT.P —~yI D},
i=1 [ Cclz Dcli _fYI J
PAC“ PB.; 0
— Z o —%I 0
Ccz, Dai =31
PA.; PBai 0 ’
+| o -2 o <0. (47
Ccli Dcli _%I

Then, the following relation holds for any vector
T, w, d with proper dimensions and 81, 2, 3 > 0

0> —6ullzall® — S2llwll® — &slldII”

T PAcli PBcli 0 Zel
> Zai [:L'Z‘l w7 dT] 0 —3I 0 w
i=1 Celi D.;  —%1 d

=z P (i i AcliTer + i achliw>
i=1 i=1
r <i a;Cepixer + i a;Dejw — %d>
i=1 i=1

’y <
~Zlfe” (48)

By considering (45), (46), and by setting d as

d= =, (49)

2w

the inequality (48) is reduced into

2
. z
> yllull? — 6 AT

0 Z _61 Lel
[zl =
T _— T o B,(Ckizk + Dkiy)
Z mc[P {mcl Zl(az az) |: AK1$K T BKly
z T ki .
+ (;) {z - ;(di — ai)Da1 (Crizk + Driy) — 52,}
i
——||w||2
T2 dt i) + —II P = Zlwll?

—Z & — i {mﬂp[

B,(Ckirkx + Dkiy)
Akixx + Briy

T
Here, define W by
W= Ll po 4 LS G - a)? 51
= Emd Tl + 5 Z(OZ'L - ai) /gia ( )

i=1



and take the time derivative of it along the trajec-
tories of z.; and &;.

W= 3 dt(xclde +Z(az—az)al/gl

i=1

1 Y

——||Z||2 + —||w||2
o T B,(Ckixx + Dkiy)

+Z i {mdp [ Akixkx + Briy

T
+ (%) D21 (Crizk + DKiy)}

+§:

From that, the adaptive law of &; are chosen such
that

& = —gi {mZ;P |: By(Crirk + Drciy) :|

IA

— )i/ gi. (52)

Arixkx + Briy

—+ (%) D21(CK.;1'K +Dsz)} . (53)

Then, W is evaluated as follows:
; o2 L Y2

W< —— — 54

< 51 + Fllel (54)

and finally, the next relation is obtained.

[ 1P+ 3w - 0o
+7Zal (t) TPl'Cl (t)
<77 [P+ 300 - 0y

+7v201(0)T Pz (0). (55)

Hence, it follows that z.;, z, &; € L=, 2y, 2 — 0
forw € L>® N L2, & € L, and that L5 gain from
w to z is prescribed by ~y, where initial errors of
tuning parameters > _._,{4;(0) — a;}? are also in-
cluded (adaptive Ho, control performance).

Theorem 2 : [t is assumed that the LMI (28),
(29) is solvable for the LPV system (13), (14),
(15). Then, the adaptive gain-scheduled control
schemes (42), (43), (53) stabilize the process (z.i,
z, & € L% x4, z — 0), and attain adaptive
H,, control performance (55), for time-invariant
a and for w € L2NL>®, & € L.

4. ROBUST ADAPTIVE GAIN-SCHEDULED
H., CONTROL OF LPV SYSTEMS

In the present section, it is assumed that the pa-
rameters « is unknown and time-varying (a, & €
L), and that w € £*. The robust adaptive
schemes (Ioannou and Sun, 1996) are introduced.

4.1 Robust Adaptive Gain-Scheduled Control via
State Feedback.

The same gain-scheduled state feedback control
(30) is chosen. Define W by (37), and take the
time derivative of it along the trajectories of z,
&; and «;. Contrary to the previous case, & # 0
should be taken into consideration.

W = 2dt($ Pzx) +Z i — a){du — i}/ gi

s——wu+1wn
T
+ mPBFm+ Ds1 Fix
> (2) o}
+§j i —a){és — ai}/gs
—&MH—%WW—&MW (56)

The projection-type adaptive laws (Ioannou and
Sun, 1996) are chosen for the tuning of & = [&,

ar] .
if £(@) <0
or £&(&)=0 & VE@)TGv >0,

a(t) = —Go,
if £(@)=0 & Vé@a) " Go <0,
L) = G 4 YE@VE@T
at) = -@ +Gvg(d)TGV£(d)G, (57)
(a(0) € 5),
where

v=[vyvy --- vT]T,

v; =z PByFix + (%) ' Doy Fiz, (1<1i<71),58)
G = diag (g1, g2, > gr)- (59)

&(a) is a differentiable function of « satisfying
&) <0, aeS(eR"), (60)

where S(€ R") is a bounded region and the con-
straints of « (5) is included in S. From the prop-
erties of projection-type adaptive laws, it follows
that & € S (a; € £*°) and that

(6—a)"G'a< —(a@—a) . (61)
Then, W is evaluated by
; 1 2 7 2
< - £
W< el + Sl
—51||r||2 — &sllwl|* = 85]ld]*

+§:

i — Q)i [ gi (62)



1 2 7 2
< —— L
3 el + Sl

+ ) (i = Gi)di/gi. (63)

Since «;, &; € L and & € L, the next relation
is obtained from (62).

W< —§W+D, (0<6 D< oo). (64)

Hence, it is shown that W € £, and that z, z €
L. Also, the next inequality is derived from (63).

/0 et + vi{@i(t) — )/
+vyz (t)TPacl(j)l
<[ o) iPar + vi{diw) — /g,
+72(0)" Px(0) -
+2’yi /Ot(ai — &i)difgid T (65)

Then, the £, gain from w to z is prescribed by -,

where initial error of tuning parameters >_;_, {&;(0)—

a;}? and time-varying elements of >__ (a;—&;)d;
/g; are also included (adaptive H, control perfor-
mance).

Theorem 3 : [t is assumed that the LMI (11),
(12) is solvable for the LPV system (1), (2). Then,
the adaptive gain-scheduled control schemes (30),
(57) stabilize the process (r, z, & € L), and at-
tain adaptive H., control performance (65) for
time varying « (o, & € L) and for w € L.

4.2 Robust Adaptive Gain-Scheduled Control via
Dynamic Compensator.

The same gain-scheduled dynamic compensators
(42), (43) are adopted. The projection-type adap-
tive laws (Ioannou and Sun, 1996) are chosen sim-
ilarly to (57), but v (58) is defined by

T BP(CK,‘I'K =+ DKiy)
vi =zl [ Arizx + Briy
A7
+ (;) Dy (Crizx + Dxkiy), (66)

(1<i<r).

Then, in the same way as 4.1, it is shown that
Ty, 2 € L2, and that the next inequality holds.

/0 s lPar + 'yZT:{OYi(t) ~ )/
+YZTo (t)TI;a: (t)
<[ )l + vi{mm) ~ o}/
a0 Pra0)

+2’yz / (i — &;)bvi [ gidr. (67)

Theorem 4 : It is assumed that the LMI (28),
(29) is solvable for the LPV system (13), (14),
(15). The adaptive gain-scheduled control schemes
(42), (43), (57), (58), (66) stabilize the process
(Tet, 2, & € L), and attain adaptive Hy, control
performance (67) for time varying o (o, & € L)
and for w € L.

Remark : The projection-type adaptive laws are
also applied to Theorem 1 and Theorem 2.

5. CONCLUDING REMARKS

A class of adaptive gain-scheduled H,, control
scheme of polytopic LPV systems is presented in
this manuscript. The current estimates of pa-
rameters are fed to the gain-scheduled controllers,
and the stability and certain H., control perfor-
mance are attained for time-invariant and time-
varying parameters. One drawback is that z and
x are needed even for the construction via dy-
namic compensators, which is to be solved in the
future study. Also, the proposed design methods
are derived from the parameter-independent Lya-
punov matrices P (Apkarian, et al., 1995), and
thus potentially conservative approaches. The in-
troduction of parameter-dependent Lyapunov ma-
trices P(a) (Gahinet, et al., 1996; Watanabe, et
al., 1996) into the adaptive control schemes is also
left in the future.
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