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Abstract: Turntable ladders with a maximum ladder length of up to 30 m can be assumed
as 3-axes flexible link robots. For operation at maximum velocity which is an important
factor for turntable ladders as fire rescue vehicles, and to realize an automated teach-in
operation mode, a trajectory tracking control based on a decentralized control approach
has been developed by a mechatronical design. The implementation guarantees active
oscillation damping of all ladder movements. The recently presented active control
system will be in future a standard equipment for the new generation of fire turntable
ladders of the cooperation partner IVECO Magirus company. Copyright © 2002 IFAC
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1. INTRODUCTION

Turntable ladders are large scale robots with two ro-
tatory axes and one translational axis mounted on a
truck. The manipulator motion possibilites are de-
fined by spherical coordinates (fig. 1). The transla-
tional coordinate is identical to telescoping the ladder
and described by the variable l. Raising of the ladder
set is defined by the angle variable ϕR, turning the
ladder by the variable ϕT. The operating range is for l
9.18 m up to 30 m, for ϕR –150 up to 750 and for ϕT
3600.

State of the art in control of turntable ladders is a
combined electronic and hydraulic control with rate
limiters without feedback loop. Because the ladder
weight should be minimized in order to achieve large
workspaces especially at low raising angles, the
stiffness of the ladder is limited which results in
swaying of the ladder in case of large ladder lengths.
Until now, this swaying was avoided by reducing the
achievable velocity depending on the ladder length
and raising angle. Aim is now to increase the veloci-
ties significantly which is important for the use of
fire turntable ladders as emergency vehicles. In addi-
tion for the fast evacuation of a large number of peo-

ple a fully automated tech-in operation mode should
be developed. The idea is to integrate a trajectory
tracking control with abilities to damp the upcoming
oscillations into the electronic and hydraulic vehicle
control (fig. 2).

Fig. 1. Fire-rescue turntable ladder as flexible link
robot.
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Therefore, the algorithm for the trajectory control has
to be embedded on the electronic control system of
the vehicle which is realized on CAN-bus connected
microcontrollers. As sensor data the trajectory con-
trol need the position of the ladder in the workspace
as well as a signal which reflects the  ladder oscilla-
tions. The ladder oscillations are detected via the
ladder flexion in horizontal direction wh and vertical
direction wv by a set of four strain gauges in the low-
est ladder part. Ladder length l, turning angle ϕT, and
raising angle ϕR are evaluated by encoder measure-
ments. By real differentiation of these signals the re-
lated velocities are determined. The turntable ladder
is driven by a hydraulic drive system. The combus-
tion engine is connected with the feed pump for the
hydraulic system. The swept volume of the pump is
controlled by a underlying load sensing flow rate
control which is affected by the servo valve. That
means the hydraulic drives for the different move-
ment directions are influenced by the input voltages
uStT, uStR, uStL  of the servo valves.
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Fig. 2. Trajectory control embedded in the vehicle.

2. AUTOMATION CONCEPT

Input for the trajectory tracking control are the com-
mands of the operator at the hand-levers or the target
positions which has been saved in the teach-in mode
in a former running of the ladder. The target position
or the target velocity is then the input information for
the following trajectory generation module (fig. 3).
This module generates the time reference functions
for the different movement directions considering the
kinematic limitations of the system (e.g. maximum
velocity, maximum acceleration and maximum jerk)
(Sawodny et al. 2001). These reference functions are
then given on the control module which are con-
nected to a specific movement direction. In the given
example this is the turning, raising and telescoping of
the ladder.

For the now following design of the control modules
for turning, raising and telescoping a dynamic model
of the turntable ladder system has to be derived. In
spite of deriving a coupled model for the whole sys-
tem (Schneider et al. 1996, de Wit et al. 1997) the
idea is to derive dynamical models which represent
the relevant part for the dynamics in the considered
movement direction  (Sawodny et al. 1999a). The

higher nonlinear terms describing the coupling of the
system in case of synchronous movement of raising,
telescoping and turning the ladder are neglected. Ad-
vantage of this decentralized control concept is a
compact control algorithm which is able to be trans-
ferred on an microcontroller system as the desired
hardware platform. At the example of raising the
ladder the derivation of the dynamic model and the
design of the control will be explained in detail and
the results discussed at specific measurements.
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Fig. 3. Structure of the trajectory tracking control.

3. DYNAMIC MODEL

For the derivation of the dynamic model describing
raising the ladder the position variable for the raising
angle ϕR is introduced (fig. 4). The vertical flexion of
the ladder is represented by the variable wv. As con-
trol variable then the raising angle ϕCR in respect to
the cage position can be defined by

l
wv

RCR −= ϕϕ (1)

mass mC

l

vehicle

ϕR

ϕCR

-wV

Fig. 4. Modeling the mechanical structure of the lad-
der.

For the description of the dynamic behavior of rais-
ing the ladder a flexible multibody system is chosen
(Maier et al. 2000). The flexion of the ladder is mod-
eled by superposition of the flexion lines of the four
ladder parts (fig. 5) and repatriated to a equivalent
stiffness. Therefore, the flexion of the ladder has to
be calculated by
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F is the interacting force, E the modulus for tension
and Il-l the geometrical moment of inertia regarding
to the direction l of the ladder.  Because the ladder
set consists of four parts, the different moment of in-
ertia of each ladder part has to be considered, if the
flexion line has been calculated by twice integration
of (2). Result is a polynomial function of third order
depending on the ladder length l

Flfwv ⋅= )( (3)

That means, the equivalent stiffness then can be as-
sumed as
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Next step is to cut the ladder into two parts (fig. 5)
and to introduce equivalent masses for them. As a
simplification the equivalent masses m are both set to
half of the complete ladder set mass mL.
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Fig. 5. Ladder set and flexible multibody representa-
tion.

Last step before deriving the equations of motion is
the evaluation of the mass moment of inertia for the
ladder. Therefore the ladder is assumed as a beam
with certain cross sectional dimensions. Result is
again a function JR(l) depending on the ladder length
l for the mass moment of inertia of the ladder. Lastly
the equations of motion derived by the Lagrange
formalism for the given system considering the
movement direction of raising the ladder are
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In the following the terms which consider the gravity
effects are neglected. MMR is the actuating torque of
the hydraulic cylinder on the ladder. mC is the re-
sulting cage mass and g the gravity constant. bR is the
viscous friction coefficient. The first equation of (5)
describes mainly the raising kinematics concerning

the lower ladder part, whereas the reaction due to the
flexion of the ladder is considered. The second equa-
tion of (5) is the equation of motion describing the
ladder oscillations due to the ladder flexion. In the
second equation beside the equivalent stiffness cRL a
damping coefficient bRL for the ladder oscillation is
introduced.

As hydraulic drive two hydraulic cylinders are
mounted in the ladder gear. The reacting torque on
the ladder can be described by the following equa-
tions (Wey et al.1999).
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Fcyl is the force of the hydraulic cylinders on the
piston rod, pcyl is the pressure in the cylinder, Acyl the
cross sectional area of the cylinder, β the compressi-
bility of the oil, Vcyl the volume of the cylinder, QFR

the flow rate, and KPR the constant which describes
the connection between flow rate and input voltage
of the valve. Dynamical effects of the underlying
flow rate control are neglected. As the relevant cyl-
inder volume for the oil compression half of the
complete cylinder volume is assumed. cylcyl zz &, are

position and velocity of the piston rod. The angle po-
sition Rϕ  and velocity Rϕ&  as well as the projection
angle ϕp depend on the position and velocity of the
piston rod cylcyl zz &, (fig. 6). The hydraulic cylinders

are mounted in the ladder gear. The piston rods of the
cylinders are fixed at the ladder set. The distances da

and db can be evalutated out of technical data of the
ladder. This results then in the following equation
describing the dependency between the piston rod
position zcyl and the raising angle ϕR:

)cos(2 0
22 ϕϕ +−+= Rabbacyl ddddz (7)
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Fig. 6. Kinematic structure of raising the ladder via
hydraulic cylinders.



The decomposition of (7) for the variable ϕR leads to
the equation (8). In addition the relation between
piston rod velocity cylz&  and raising angle velocity

Rϕ&  is necessary.
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For the calculation of the actuating torque on the
ladder set the projection angle is needed
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In the following instead of the trigonometric func-
tions of (10) the auxiliary variables h1 and h2 are
used. For the  control design the equations (5) to (10)
are transformed into linear state space representation.
The nonlinearities of the trigonometric terms and the
coupling to the other movement directions especially
of telescoping the ladder are interpreted as varying
system parameters. This leads to the following state
space representation
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The resulting system is now assumed as linear in the
small signal behavior concerning to the defined state
vector. The nonlinear coupling terms of higher order
due to synchronous movement of telescoping and
raising are neglected.
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Fig. 7. Control module structure.

4. CONTROL DESIGN

The control module is configured as a combination of
adaptive feedforward control and a robust designed
feedback loop (fig. 7). In addition the static
nonlinearities of the servo valve (hysteresis and death
zone) has to be compensated by the inverse function
in the block for the compensation of the hydraulics.
The design of the feedforward control is based on the
idea of plant inversion. Input of the feedforward
control block is the vector of the reference functions
for the cage raising angle ϕCR.
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The feedforward control is defined by the following
matrix consisting of the feedforward gains KFR0 to
KFR4.

][ 43210 FRAFRFRFRFRR KKKKKS = (14)

The state space representation of the considered sys-
tem according to (11) is extended by the input vector,
the feedforward matrix and the feedback loop. This
leads to the following representation of the system.
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where the feedback matrix is defined by

 ]   [ 54321 RRRRRR kkkkkK = (16)

For the feedforward control design the input vector
wR is transformed into frequency domain.
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The transfer function for the control variable ϕCR is
then
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The transfer function G(s) has the following form
illustrating the dependency of the feedforward gains
to the nominator coefficients
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An ideal dynamic behavior is achieved, if the coeffi-
cients fulfill the following conditions

1..0for         −== niab ii (20)

where n is the system order. In time domain this cor-
responds with the following differential equation
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Because the order of the left hand part of the differ-
ential equation is lower than the part of the right
hand side, the complete compensation by the feed-
forward control can not be achieved. But the com-
parison of the coefficients i=0..4 leads to an advanta-
geous behavior in combination with the feedback
loop. Solving the resulting linear equation system
(20) for the feedforward control gains leads to
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The feedforward control gains are depending on the
system parameters KPR, Acyl, Vcyl, ϕR, β, JR, m, mC,
cRL, bRL , bR, db, da. Due to this relation an adaptation
of the feedforward control gains is achieved by gain
scheduling depending on ladder length l and the
raising angle ϕR resulting in a trajectory tracking of
the given reference functions for the cage angle po-
sition, velocity, acceleration, jerk and the derivation
of the jerk. In addition changing technical data can be
taken into account by changing the relevant pa-
rameter in the initialization file. This procedure is
related to the design of a flatness based feedforward
control (Fliess et al. 1991, Delaleau et al. 1998). But
in fact, it is still applicable although the output is not
a flat output and the considered system is
characterized by zero dynamics. This may also been
seen in the fact that the nominator can not
compensate the denominator of the transfer function
via the feedforward gains completely.

To compensate the parameter uncertainties and ex-
ternal disturbances, and to suppress the influence of
the non feedforward compensated dynamics the sys-
tem is completed by the robust designed feedback
loop by pole assignment according to
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The feedback loop is designed for the critical oper-
ating point which is in the given problem the lowest
raising angle, the lowest cage mass and the largest
ladder length. ri are the desired poles of the closed
loop system. The numerical values of the feedback
gains designed for this working point are then set to
constant and the robustness concerning stability of
the system is simplified checked by evaluating the
eigenvalues of the closed loop system in case of
varying ladder length, cage mass, and raising angle in
the interval [lmin, lmax] and  [ϕRmin , ϕRmax].

5. MEASUREMENT RESULTS

The efficiency of the control concept is illustrated in
several measurement plots. Fig. 8 shows the reaction
with deactivated control. Due to the excitation of the
ladder set the resulting oscillations are fairly low
damped. The activated control damps the oscillations
within a few seconds. The effect is more evidently at
the measurement of the derivation of the flexion.
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Next, a raising movement of the ladder is shown in
fig. 9 with activated control. The upcoming oscilla-
tions are very low. The flexion is beyond a few cen-
timeters and the oscillations reflecting the derivative
of the flexion signal are damped within 5 sec.
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Fig. 9. Movement of the ladder by raising the ladder
set with activated control. (l=20 m; mC=230 kg)

6. CONCLUSION

The presented control for a turntable ladder as a
multi-axes robot system, moving in spherical coordi-
nates, is a modelbased decentralized control concept.
As a representation for the dynamic behavior a flexi-
ble multibody system for the mechanical part is de-
rived connected with the specific movement direc-
tions. The mechatronical design includes the dy-
namic behavior of the hydraulic drive system in the
model equations. Because of low computational
power of the control hardware the dynamic model
neglects the higher nonlinear coupling terms in case
of synchronous movement of the axes. The control
itself consists of  an adaptive feedforward control

module based on the inverse dynamics and a state
feedback loop. The feedforward module takes vary-
ing ladder lengths and raising angle by adaptation of
the feed forward control gains into account. The
feedback controller is designed on robustness criteri-
ons for the most critical operation point. The effi-
ciency of the control is illustrated in several meas-
urement plots and demonstrate the advantages of the
new control in comparison to the state of the art. Re-
sult are two times higher velocities and complete
damping of the arising oscillations. The control is
realized on the new generation of fire rescue turnta-
ble ladders of IVECO Magirus and will be in future
belonging to the standard equipment.
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