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Abstract: The paper proposes a general framework to study the exponential 
stabilization problem for a class of nonlinear systems. By using the σ-processing, the 
exponential stabilization problem can be solved provided that all solutions of an 
augmented system are uniformly globally bounded. Based on this result, a simple 
and general stability criterion is presented. Two well-known nonholonomic systems 
are shown that they fall into the considered class and satisfy the proposed criterion. 
In particular, the exponential stability can be achieved for these systems. These 
examples validate the effectiveness of the proposed results.  Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
The paper studies the exponential stabilization 
problem for the following cascade nonlinear systems  

11111 uBxAx +=&                            (1) 

211221122 ),(),( uuxBxuxAx +=& ,        (2) 

where in
ix ℜ∈  and im

iu ℜ∈ , 2,1=∀ i ; 1A  and 1B  
are matrices with suitable dimensions; ),( 112 uxA  
and ),( 112 uxB  are smooth matrix-valued functions. 
The goal of this paper is two-fold. Firstly, we attempt 
to propose a simple and general criterion to solve the 
exponential stabilization problem for the system (1)-
(2). Secondly, it will be shown that many well-
known nonholonomic systems can be described or 
transformed into systems of the form (1)-(2) and 
satisfy the proposed stability criterion, e.g., the 
chained systems (Murray and Sastry, 1993), the 
power form systems (Luo and Tsiotras, 1998) and a 
planar rigid body with a point mass (Reyhanoglu, et 
al., 1998) , e.t.c.. Due to a limited space, only two 
examples are illustrated. Other examples can be 
treated similarly.  
 
Our approach has two stages. Firstly, system (1)-(2) 
will be transformed into an augmented system by 
applying the σ -processing introduced by Astolfi 
(1996). More explicitly, for any 22 , mn sr ℜ∈ℜ∈  and 

0>k , the following augmented system 

11111 )( uBxAkIx ++=&                                 (3) 

211221122 ),,()),,(( uuxBxuxAkDx rsrrr λλ ++=& (4)

will be defined where I  is the identity matrix, rD is 
a diagonal matrix associated with the vector r , 

ktexx −= ))0(),0(( 21µλ  for some function µ and rrA2  

and rsB2  are two matrix-valued functions associated 
with r , s , 2A  and 2B . According to the σ -
processing, the exponential stabilization problem is 
solvable for the system (1)-(2) provided that all 
solutions of the closed-loop system of the 
transformed system (3)-(4) are uniformly globally 
bounded by applying some controller. The 
transformation is very useful since checking the 
boundedness of solutions is more easily than 
checking the exponential stability in general. The 
second stage in this paper is to show that there will 
be many possibilities for choosing a controller such 
that all solutions of the closed-loop system of (3)-(4) 
are uniformly globally bounded if, under some 
regularity condition the following hypothesis holds: 
(H1) Suppose ),( 11 BAkI +  is stabilizable and 

))0,,(),0,,(( 22 baBbaAkD rsrrr +  is stabilizable for 

some vector 11),( mnba ℜ×ℜ∈  with 
0)( 11 =++ bBaAkI . 

Then, the exponential stabilization can be guaranteed 
for any system in the form (1)-(2) and satisfying 
hypothesis (H1).  
 
A similar method was used to study the exponential 
stabilization problem of nonholonomic systems in 
present literature (Astolfi, 1996; Laiou and Astolfi, 
1999; Luo and Tsiotras, 1998; Luo and Tsiotras, 
2000; Tian and Li, 2000; Reyhanoglu, et al., 1998).  
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The pioneer work of Astolfi in 1996 shown that the 
exponential stability of a nonholonomic chained 
system can be guaranteed by using a discontinuous 
feedback law. Later on, it was extended to high-order 
generalized chained systems in (Laiou and Astolfi, 
1999). The discontinuous feedback method was also 
applied to studying a nonholonomic underactuated 
mechanic system in (Reyhanoglu, et al., 1998). 
Although the discontinuous feedback method is a 
powerful tool, it has some weakness. For example, 
there is a singular hyperplane such that the controller 
cannot be defined when the initial state is on the 
hyperplane. Moreover, the control effect will become 
very large when the initial state is close to the 
singular hyperplane. Thus, a modification is 
necessary. In (Luo and Tsiotras, 2000), a switching 
controller approach was proposed to overcome this 
problem. For chained systems, another possibility 
was given in (Tian and Li, 2000) by using a time-
varying smooth controller modified from the 
discontinuous feedback law. Roughly speaking, these 
results are all using the σ -processing to transform 
the studied system into a system of the form (3)-(4). 
The difference is the choice of the function µ . For 
the discontinuous feedback method, the function µ  
was usually chosen as a linear function. On the 
contrast, the time-varying smooth feedback method 
was using the constant function ≡µ 1.  
 
In this paper, we attempt to give a unified framework 
and extend the results given in present literature to 
more general nonlinear systems of the form (1)-(2). 
The proposed criterion as stated in hypothesis (H1) is 
very easily verified. Moreover, it can be applied to 
many nonlinear systems rather than some special 
nonholonomic systems. Two illustrated examples 
will be given to validate the effectiveness of our 
approaches. 
 
 

2. PRELIMINARIES 
 
 
2.1 σ-processing: dilation and augmented systems 
 
In this subsection, the definition of dilation on a 
Euclidean space will be reviewed and extended to the 
case of matrices. We will use it to define the 
augmented system given in (3)-(4). Throughout this 
paper, let mn×ℜ  denote the set of all mn×  matrices 
and ),,,( 21 n

r rrrdiagD L=  denote the diagonal 
matrix with respect to a vector 

n
nrrrr ℜ∈= ),,,( 21 L . In the following, let us recall 

and extend the definition of the dilation given in 
present literature to the case of matrices. 

 

Definition 1: Let nT
nvvvv ℜ∈= ),,,( 21 L . A 

dilation nnr ℜ→ℜ∆ :λ  on nℜ  is defined by 
assigning n  real numbers ),,,( 21 nrrrr L=  and a 
nonzero real number ζ  such that 

),,,( 21
21

n
rrrr vvvv nζζζζ L=∆ . Similarly, let 

mn
ijaA ×ℜ∈= )( . A dilation mnmnrs ×× ℜ→ℜ∆ :λ  on 

mn×ℜ  is defined by assigning mn + real numbers 
),,,( 21 nrrrr L=  and ),,,( 21 mssss L= , and a real 

number 0≠ζ  such that )( ij
srrs aA ji −=∆ ζζ .              

 
    The following lemma gives a basic property of the 

dilation. The proof is omitted since it is 
straightforward. 

 

Lemma 1: Let nv ℜ∈ , mw ℜ∈  and mnA ×ℜ∈  such 
that vAw = . Then, for any vector mnsr ℜ×ℜ∈),( , 
the following equation holds: 

                         vwA rsrs
ζζζ ∆=∆∆ )( .                           (5) 

 
 In the following, we would like to define a 
augmented system of the form (3)-(4) for the system 
(1)-(2) using the concept of dilation. Consider the 
system (1)-(2). Let ),0[: 21 ∞→ℜ×ℜ nnµ  be any 
continuous function. For any initial state 

))0(),0(( 21 xx  and any positive constant k , define 
the function λ  by  
                           ktexxt −= ))0(),0(()( 21µλ .           (6) 

Thus, λλ k−=&  by the direct computation. Now, let 
us apply the σ-processing for the system (1)-(2) to 
derive a augmented system of the form (3)-(4) 
(Astolfi, 1996). Assume that 0))0(),0(( 21 ≠xxµ  
temporarily. Then, 0,0)( ≥∀≠ ttλ . Let 

22),( mnsr ℜ×ℜ∈  be any vector. Define new state 
variables ),( 21 xx  and new control variables ),( 21 uu  
as in the following: 

,,/,/ 2/121111 xxuuxx r
λλλ ∆===  

2/12 uu s
λ∆= .                                                (7) 

Then, by the direct computation, we have 

1111
11

1 )( uBxAkI
xx

x ++=+−=
λλλ

λ &&
& .       (8) 

in view of equation (1) and the fact λλ k−=& . Let 
rrA2  and rsB2  be two matrix-valued functions defined 

as in the following: 
),,(),,( 2/12 wvAwvA rrrr ζζζ ζ∆=  

                ),(),,( 2/12 wvBwvB rsrs ζζζ ζ∆= ,            (9) 

for all { }0,, 11 −ℜ∈ℜ∈ℜ∈ ζmn wv . Then, it can be 
checked that the following equations hold: 

)10(,),,()),,((

)))(,(()))(,((

)(

21122112

2/1112/12/1112/1

22/12/12

uuxBxuxAkD

uuxBxuxA

xkDxxDx

rsrrr

srsrrr

rrrr

λλ

λ
λ

λλλλ

λλ

++=

∆∆+∆∆+

=∆+∆−= &
&

&

 

by Lemma 1 and the definitions of rrA2  and rsB2 . In 
particular, an augmented system of the form (3)-(4) 
is derived. We summarize the previous discussion 
into the following lemma. 
 
Lemma 2: Consider the system (1)-(2). Let  



    

22),( mnsr ℜ×ℜ∈  be any vector. Using the 
coordinate transformation (7), it can be transformed 
into a system of the form (3)-(4) for any initial state 
satisfying 0))0(),0(( 21 ≠xxµ  where rrA2  and rsB2  are 
the matrix-valued functions defined in (9).        
 
 
2.2 A preliminary result 
 
In this subsection, the exponential stabilization for 
the system (1)-(2) will be guaranteed by employing 
the augmented system (3)-(4). This is a preliminary 
study for our main results.  To simplify the 
discussion and avoid the singularity, the function µ  
is always chosen as 1≡µ  in the remainder of this 
paper. Note that 0,0)( ≥∀> ttλ , in this case. Thus, 
the coordinate transformation (7) can be performed 
for all initial state. In the following, a definition 
about the κ -exponential stability is reviewed 
(Sordalen and Egeland, 1995). 
 
Definition 2: The equilibrium point 0=x  of 

),( xtfx =&  is weakly globally κ -exponentially 
stable if there exist a strictly increasing continuous 
function ),0[),0[: ∞→∞α and a positive constant 
σ such that  

.)0(,0,))0(()( nt xtextx ℜ∈∀≥∀≤ −σα          (11) 
In addition to 0)0( =α , it is said that the equilibrium 
point 0=x  is globally κ -exponentially stable.       
 

   In the following, we want to show that the weak 
global κ -exponential stability can be achieved for 
the system (1)-(2). To this end, we need the 
following hypothesis for augmented systems of the 
form (3)-(4). 
 
(H2) Suppose there exist a constant 0>k , 22 mn +  
positive real numbers ),,,(

221 nrrrr L=  and 
),,,(

221 nssss L= , with 1≥ir  and 1≥js  for all 
ji,  such that with the controller chosen as 

)),(),,((),( 21221121 xxxxuu ββ= , all solutions of 
the closed-loop system of the augmented system (3)-
(4) are uniformly globally bounded where rrA2  and 

rsB2  are the matrix-valued functions defined in (9).   
 
Proposition 1: Consider the system (1)-(2). Let λ  be 
chosen as in the equation (6) with 1≡µ . Suppose 
hypothesis (H2) holds. Choose the controller as in 
the following 

),( 2/1
1

11 xxu r
λλ

βλ ∆=  and .),( 2/1
1

22 x
x

u rs
λλ λ

β ∆∆=                     

(12) 
Then, the origin of the closed-loop system is weakly 
globally κ -exponentially stable.  
 
Proof: Note that mss www ℜ∈∀=∆∆ ,/1 λλ , by the 
definition of dilation. From this and using the 
coordinate transformation (7), we have 

),( 211
1

1 xx
u

u β
λ

==  and ),( 2122/12 xxuu s βλ =∆= .   

By Lemma 2, the system (1)-(2) can be transformed 
into the augmented system (3)-(4). In view of 
hypothesis (H2), all solutions of the closed-loop 
system of (3)-(4) are uniformly globally bounded. 
This implies that there is a strictly increasing 
continuous function ),0[),0[: ∞→∞α  such that  
        ,0),))0(),0((())(),(( 2121 ≥∀≤ txxtxtx α   (13) 

see (Khalil, 1996) for example. Since 1)( ≤= −ktetλ  

and 1≥ir  by definitions, the inequality )()( tt ir λλ ≤  
holds, 0≥∀t , 2,,2,1 ni L=∀ . This results in 

)14(.0,)))0(),0(((

))(),(())(),(())(),((

21

212121

≥∀≤

≤∆=
− texx

txtxtxtxtxtx
kt

r

α

λλ λ

    in view of the inequality (14) and the fact 
))0(),0(())0(),0(( 2121 xxxx = . Thus, the origin of 

the closed-loop system is weakly globally κ -
exponentially stable. This completes the proof.         
 
Remark 1: In next section, it will be shown that a 
linear controller )),(),,((),( 21221121 xxxxuu ββ= can 
be given such that Hypothesis (H2) holds. More 
explicitly, it will take the form:     

                111 xKc +=β  and 222 xK=β ,                (15) 

for some 111
1, nmn Kc ×ℜ∈ℜ∈  and 22

2
nmK ×ℜ∈ . 

Then, the controller ),( 21 uu  of the original system 
can be explicitly given by 

                 111 xKcu += λ   

and         222/122 )()( xKxKu srrs
λλλ ∆=∆∆= .          (16) 

in view of the equation (12) and Lemma 1.              
 
Remark 2: In Proposition 1, the function µ  is 
chosen as 1≡µ . For the other choice of µ , a similar 
result also holds for all initial states satisfying 

0))0(),0(( 21 ≠xxµ . However, the controller given in 
(12) cannot be defined on the set 

{ }0),(),( 2121 == xxxxS µ  in general.                     
 

 
 

3. GLOBAL EXPONENTIAL STABILITY 
 
We have shown that the exponential stabilization of 
system (1)-(2) can be guaranteed using the σ-
processing and the hypothesis (H2) in previous 
section. As it was introduced in Section 1, the 
hypothesis (H1) will be used to check the hypothesis 
(H2). Note that, the functions rrA2  and rsB2  given in 

(9) can only defined on { }011 −ℜ×ℜ×ℜ mn . Thus, 
the following regularity hypothesis is necessary to 
employ hypothesis (H1). 
 
(H3) Suppose there exist 22 mn +  positive real 
numbers ),,,(

221 nrrrr L=  and ),,,(
221 nssss L= , 

with 1≥ir  and 1≥js  for all ji, , such that the limits  

),,(lim 112,,0 11
ζ

ζ
uxArr

wuvx →→→
(= )0,,(2 wvArr ) 



    

and ),,(lim 112,,0 11
ζ

ζ
uxB rs

wuvx →→→
(= )0,,(2 wvBrs )  

exist, for all 1nv ℜ∈  and 1mw ℜ∈ .  
 
Remark 3: Let us give a brief discussion about the 
verification of (H3). On practical applications, it is 
usually appeared that functions ),( 112 uxA  and 

),( 112 uxB  both are analytic matrix-valued functions. 
Then, they can be decomposed as  

hl AAA 222 +=  and hl BBB 222 += , 
by using their Taylor expansions at (0,0) where the 
matrix-valued functions ),( 112 uxAl  and ),( 112 uxB l  
are consisting of the lowest order terms appearing in 
the Taylor expansion, respectively. Thus, it can be 
seen that elements of ),( 112 uxAl  and ),( 112 uxB l  are 
all homogeneous polynomials. Let )( 2

l
ij Ad  and 

)( 2
l

ij Bd  denote the degrees of the (i,j) entry of 

),( 112 uxAl  and ),( 112 uxB l , respectively. We define 
∞=ijd  for the zero function. Then, it is possible to 

show that the hypothesis (H3) holds if and only if the 
inequalities )( 2

l
ijji Adrr ≤−  and )( 2~~

l
jiji Bdsr ≤−  

hold for all ,,1 2nji ≤≤ 2

~1 mj ≤≤ .                          
 

In view of hypothesis (H3), rrA 2  and rsB2  are 

continuous functions defined on ℜ×ℜ×ℜ 11 mn  now. 
Before state the main theorem, the following 
technique lemma is necessary. The proof is standard 
and we refer readers to the book of Khalil (1996) for 
details. 
 
Lemma 3: Consider the following time-varying 
system 
                               .)),(( xtxBAx +=&                   (17) 
Let ),0[),0[),0[: ∞→∞×∞h  be a function such that, 
for each fixed t , the function ),( th η  is increasing 
w.r.t. η  and, for each fixed η , the function ),( th η  is 
decreasing w.r.t. t  and 0),( →th η  as ∞→t . 
Suppose A  is a stable matrix and 

),)0(()),(( txhttxB ≤ , for all 0≥t  and all 
solutions )(tx of (17). Then, all solutions of (17) are 
uniformly globally bounded.                                     
 
    Now, we are in a position to give the main result. 
 
Theorem 1: Consider the system (1)-(2). Suppose 
there exists a positive constant k  such that 
hypotheses (H1) and (H3) hold where rrA2  and rsB2  
are the matrix-valued functions defined as in (9). Let 

kte−=λ . Then, there exist a vector 1nc ℜ∈ , two 
matrices 11

1
nmK ×ℜ∈  and 22

2
nmK ×ℜ∈ such that with 

the controller ),( 21 uu  chosen as in (16), the origin of 
the closed-loop system is weakly globally κ -
exponentially stable. 
 
Proof: Let a , b , r  and s  be the vectors given in 
hypotheses (H1) and (H3). Consider the augmented  

 
system (3)-(4). We want to show that hypothesis (H2)  
holds with the functions 1β  and 2β  taken the form  
(15). Let us define a new coordinate by 

axx −= 11ˆ and buu −= 11ˆ . Replacing 1x  and 1u  by 

1x̂  and 1û , respectively, the equation (3) still holds in 
view of the equation 0)( 11 =++ bBaAkI . Let  

)0,,(22 baAkDA rrr +=  and )0,,(22 baBB rs= . By 
hypothesis (H1), there exist two matrices 

11
1

nmK ×ℜ∈  and 22
2

nmK ×ℜ∈  such that the matrices 

111 KBAkI ++  and 222 KBA +  are both stable 
matrices. Choose the controller ),ˆ( 21 uu  as 

),ˆ(),ˆ( 221121 xKxKuu = . Then, the controller ),( 21 uu  
is in the form of (15) with aKbc 1−= . Thus, the 
controller ),( 21 uu  can be given as in (16) by the 
discussion in Remark 1. Define the state 

),ˆ( 21 xxx = and two matrices in the following 










+

++
=

222

111

0

0

KBA

KBAkI
A  , 








=

220
00

),(ˆ
B

xB ζ , 

where  

.))0,,(),ˆ,ˆ((
)0,,(),ˆ,ˆ(

221112

2111222

KbaBbxKaxB
baAbxKaxAB

rsrs

rrrr

−+++

−++=

ζ
ζ

 

Then, A  is also a stable matrix and the closed-loop 
system of the system (3)-(4) can be written into the 
equation (17) with ),(ˆ ktexBB −≡ . Note that ),(ˆ ζxB  
is only the function of 1x̂  and ζ . Since 

111 KBAkI ++  is stable, every solution )(ˆ1 tx  of 

11111 ˆ)(ˆ xKBAkIx ++=&  satisfies the inequality 

)0(ˆ)(ˆ 121
1 xetx tσσ −≤  for some positive constants 

1σ  and 2σ . Define a function 

),0[),0[),0[: ∞→∞×∞h  as in the following          

{ }ktt eexxBth −− ≤≤= ζησζη σ ,ˆ),(ˆsup),( 1
21 . 

By the definition of B̂ , it is easy to see that 
0),(ˆlim

0,0ˆ1

=
→→

ζ
ζ

xB
x

. This implies that for each fixed 

η , 0),( →th η  as ∞→t . Moreover, for each fixed 
t , the function ),( th η  is increasing w.r.t. η  and, for 
each fixed η , the function ),( th η  is decreasing w.r.t. 
t . By the definitions of h  and B , we have 

),)0(()),(( txhttxB ≤ , for all 0≥t . Note that the 
boundedness of ))(),(ˆ( 21 txtx is equivalent to the 
boundedness of ))(),(( 21 txtx  because of axx −= 11ˆ  
by definition. Thus, all solutions of the closed-loop 
system of (3)-(4) are uniformly globally bounded in 
view of Lemma 3. In particular, the hypothesis (H2) 
holds and the theorem follows from Proposition 1. 
This completes the proof.                                          
 
Remark 4: In nonlinear systems theory, a well-
known theorem says that the local exponential 
stability of a nonlinear system can be guarantee when 
its linearized system is stable. Theorem 1 gives a 
similar criterion. Indeed, consider the linearized 



    

 system of (3)-(4) (with 0=λ ) at )0,(),( 21 axx =  
and )0,(),( 21 buu =  in the following 

11111 ˆˆ)(ˆ uBxAkIx ++=&                                              (18)     

22222 ˆ)0,,(ˆ))0,,((ˆ ubaBxbaAkDx rsrrr ++=& .     (19) 

Then, the hypothesis (H1) says that the linearized 
system (18)-(19) is stabilizable. Thus, roughly 
speaking, Theorem 1 tell us that the original system 
is exponentially stabilizable when the linearized 
system (18)-(19) is stabilizable. In particular, the 
exponential stability is independent on the nonlinear 
terms  

)0,,(),,( 2112 baAuxA rrrr −λ , )0,,(),,( 2112 baBuxB rsrs −λ . 
 From the point of view above, the proposed 
controller has the robustness w.r.t. some nonlinear 
uncertainties. We refer readers to (Laiou and Astolfi, 
1999) for a further discussion.                                  
 
In the following, we would like to give a simplified 
criterion to check the hypothesis (H1). Usually, a 
stronger condition-controllability than the stability 
can be guaranteed on practical applications. In this 
case, it is well-known that ),( BA  is controllable if 
and only if ),( BAkI +  is controllable for any 
constant k . In particular, the hypothesis (H1) holds 
under the following hypothesis. 
 
(H4)  Suppose ),( 11 BA  is controllable and there 
exists a positive constant k , a vector 

11),( mnba ℜ×ℜ∈  such that 0)( 11 =++ bBaAkI  

and ))0,,(),0,,(( 22 baBbaAkD rsrrr +  is controllable. 
 
     In view of (H4), the following corollary is 
readable from Theorem 1. 
 
Corollary 1: The same result as stated in Theorem 1 
holds when the hypothesis (H1) is replaced by the 
hypothesis (H4).                                                         
 
Remark 5: So far, it seems that an explicit controller 
was not given in this paper. In fact, there are many 
well-established methods can be employed to find a 
stable controller under the controllability condition in 
linear system theory, e.g., the pole-placement method, 
the LQG method, e.t.c.. Then, the controller of 
systems (1)-(2) can be chosen as in (15) with  

aKbc 1−= , and 1K  and 2K  are the corresponding 
stable feedback gain.                                                  
 
 
4. TWO EXAMPLES FROM NONHOLONOMIC 

SYSTEM 
 
 In this section, two well-known examples from 
nonholonomic systems will be proposed and show 
that they can be described or transformed into a 
system of the form (1)-(2). Moreover, the hypotheses 
(H3) and (H4) hold for these systems. Thus, the 
exponential stability can be achieved by using 
Corollary 1. For these systems, ),( 11 BA  are all in the  

controllable canonical form (CCF). Thus, the main 
task is to check the controllability of 

))0,,(),0,,(( 22 baBbaAkD rsrrr + .  
 
 
4.1 Chained systems 
 
Consider the following chained system  

,1,,1,11

2

10

−==
=
=

+ niuyy
uy
uy

ii

n

L&

&

&

           (20) 

see (Murray and Sastry, 1993).  We want to show 
that the chained system (20) can be described into a 
system of the form (1)-(2). Moreover, hypotheses 
(H3) and (H4) also hold. We divide the verification 
procedure into the following steps. 
 
Step 1: (Transformation) Let 01 yx =  and 

T
nyyyx ),,,( 212 L= . Then, the system (20) can be 

transformed into the form (1)-(2) where 01 =A , 

11 =B , TBB )1,0,,0(02 L== , 012 AuA =  and 
),( 00 BA  is in CCF. 

 
Step 2: (Choosing parameters) Let )1,2,,( Lnr = , 

1=s , η=a  and ηkb −= , 0>∀k , 0≠∀η . Then, 

)1,2,,( LndiagDr =  and 0)( 11 =++ bBaAkI . 
 

Step 3: (Computing rrA2  and rsB2 , see (9)) By direct 

computation, 02/12 ),(),,( wAwvAwvA rrrr =∆= ζζζ ζ  

and 02/12 ),(),,( BwvBwvB rsrs =∆= ζζζ ζ . Then, 
hypothesis (H3) holds. 
 
Step 4: (Checking the controllability) Let 

022 )0,,( AkkDbaAkDA rrrr η−=+=  and 

022 )0,,( BbaBB rs == . The determinant of 
controllability matrix can be computed as 

[ ] 0)(),,,det( 2/)1(
2

1
2222 ≠−= −− nnn kBABAB ηL . Thus 

),( 22 BA  is controllable.  
 
Particularly, the hypothesis (H4) holds. Thus, the 
exponential stability can be achieved by using 
Corollary 1. A similar procedure will be applied to 
another example. Due to a limit space, only steps 1-4 
are listed. The detailed discussion is omitted. 
 
 
4.2  A planar rigid body with a point mass 
 
Consider a planar rigid body with a point mass 
(Reyhanoglu, et al., 1998):  

.)sin()cos( 2
21

2

1

1

θθθ

θ

&&&

&&

&&

&&

svvs

vy
vx
u

+−−=

=
=
=

            (21) 

 



    

Step 1: (Transformation) Let Tx ),(1 θθ &=  and 

.,
)cos()sin(

)sin()cos(
)( ℜ∈∀








−

= θ
θθ

θθ
θU  

Define Txxxxxxx ),,,,,( 2625242322212 =  where 
TT yxUxx ),()(),( 2221 θ= , TT yxUxx ),()(),( 2423 &&θ=  

and TTT xxssxx ),(),(),( 23212625 += & .  

Let TvvUu ),)(( 212 θ= . Then, the system (21) is 
feedback equivalent to the system (1)-(2) where 
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functions 2A  and 2B  are given in the following: 
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Step 2: (Choosing parameters) Let )2,2,1,2,1,2(=r  

and )1,2(=s , Tka ),( ηη −=  and η2kb = , 0>∀k , 

0≠∀η . Then, )2,2,1,2,1,2(diagD r =  and 
0)( 11 =++ bBaAkI . 

 

Step 3: (Computing rrA2  and rsB2 ) Let Tvvv ),( 21= . 

Then, 22 BB rs ≡  and rrA2 can be computed s the 
following:
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Then, hypothesis (H3) holds. 
 
Step 4: (Checking the controllability) The matrix 

)0,,(22 baAkDA rr
r +=  can be computed in the 

following: 
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Let 222 )0,,( BbaBB rs == , 1b  and 2b  are two 
column vectors such that 221 ),( Bbb = . Let 

11211 2kbbAb −= , 122221 kabkbbAb +−= , 

112121222 kabkbbAb +−=  and 22223 bAb = . Then, 

0),,,,,det( 24
2322211121 ≠−= ηkbbbbbb . This implies 

that  ),( 22 BA  is controllable.  Particularly, the 
hypothesis (H4) holds. Thus, the exponential stability 
can be achieved by using Corollary 1. 
 
 

5. CONCLUSION 
 
The exponential stabilization was studied for a class 
of nonlinear systems using a systematic approach. A 
simple and general criterion was proposed to 
guarantee the exponential stability. Several examples 
from nonholonomic systems were given to validate 
the effectiveness of the proposed result. The future 
work may toward to extending the result given in this 
paper to more general nonlinear systems and finding 
a geometry condition to assert that a nonlinear 
system can be transformed to a system in the form 
(1)-(2) and satisfying the hypotheses (H3)-(H4).  
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