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Abstract: The paper proposes a general framework to study the exponential
stabilization problem for a class of nonlinear systems. By using the o-processing, the
exponential stabilization problem can be solved provided that all solutions of an
augmented system are uniformly globally bounded. Based on this result, a simple
and general stability criterion is presented. Two well-known nonholonomic systems
are shown that they fall into the considered class and satisfy the proposed criterion.
In particular, the exponential stability can be achieved for these systems. These
examples validate the effectiveness of the proposed results. Copyright © 2002 IFAC
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1. INTRODUCTION

The paper studies the exponential stabilization
problem for the following cascade nonlinear systems

X, =4, x + B u, (1)

X, = A, (0, uy) X, + By (X, 1) uy,s (2
where x, e R" and u, e R™, Vi=1,2; 4, and B,
are matrices with suitable dimensions; 4, (x;,u;)
and B,(x,,u,) are smooth matrix-valued functions.

The goal of this paper is two-fold. Firstly, we attempt
to propose a simple and general criterion to solve the
exponential stabilization problem for the system (1)-
(2). Secondly, it will be shown that many well-
known nonholonomic systems can be described or
transformed into systems of the form (1)-(2) and
satisfy the proposed stability criterion, e.g., the
chained systems (Murray and Sastry, 1993), the
power form systems (Luo and Tsiotras, 1998) and a
planar rigid body with a point mass (Reyhanoglu, et
al., 1998) , e.t.c.. Due to a limited space, only two
examples are illustrated. Other examples can be
treated similarly.

Our approach has two stages. Firstly, system (1)-(2)
will be transformed into an augmented system by
applying the o -processing introduced by Astolfi

(1996). More explicitly, for any » € R™, s € R™ and
k >0, the following augmented system

X,= (k[ + A,)%, +B, u, 3)
X, = (kD" + A7 (3,10, )T, + By (3,,10,,4) ity (4)

will be defined where 7 is the identity matrix, D" is
a diagonal matrix associated with the vector r ,

A = u(x,(0),x,(0))e™ for some function x and A
and B)® are two matrix-valued functions associated
with », s, 4, and B, .
processing, the exponential stabilization problem is
solvable for the system (1)-(2) provided that all
solutions of the closed-loop system of the
transformed system (3)-(4) are uniformly globally
bounded by applying some controller. The
transformation is very useful since checking the
boundedness of solutions is more easily than
checking the exponential stability in general. The
second stage in this paper is to show that there will
be many possibilities for choosing a controller such
that all solutions of the closed-loop system of (3)-(4)
are uniformly globally bounded if, under some
regularity condition the following hypothesis holds:

(H1) Suppose (kI +A4,,B;) 1is stabilizable and

(kD" + 4; (a,b,0), B’ (a,b,0) ) is stabilizable for
(a,b) e R™ xR™ with

According to the o -

some vector
(kI +A4)a+B b=0.
Then, the exponential stabilization can be guaranteed
for any system in the form (1)-(2) and satisfying
hypothesis (H1).

A similar method was used to study the exponential
stabilization problem of nonholonomic systems in
present literature (Astolfi, 1996; Laiou and Astolfi,
1999; Luo and Tsiotras, 1998; Luo and Tsiotras,
2000; Tian and Li, 2000; Reyhanoglu, et al., 1998).



The pioneer work of Astolfi in 1996 shown that the
exponential stability of a nonholonomic chained
system can be guaranteed by using a discontinuous
feedback law. Later on, it was extended to high-order
generalized chained systems in (Laiou and Astolfi,
1999). The discontinuous feedback method was also
applied to studying a nonholonomic underactuated
mechanic system in (Reyhanoglu, et al., 1998).
Although the discontinuous feedback method is a
powerful tool, it has some weakness. For example,
there is a singular hyperplane such that the controller
cannot be defined when the initial state is on the
hyperplane. Moreover, the control effect will become
very large when the initial state is close to the
singular hyperplane. Thus, a modification is
necessary. In (Luo and Tsiotras, 2000), a switching
controller approach was proposed to overcome this
problem. For chained systems, another possibility
was given in (Tian and Li, 2000) by using a time-
varying smooth controller modified from the
discontinuous feedback law. Roughly speaking, these
results are all using the o -processing to transform
the studied system into a system of the form (3)-(4).
The difference is the choice of the function & . For

the discontinuous feedback method, the function u

was usually chosen as a linear function. On the
contrast, the time-varying smooth feedback method
was using the constant function g =1.

In this paper, we attempt to give a unified framework
and extend the results given in present literature to
more general nonlinear systems of the form (1)-(2).
The proposed criterion as stated in hypothesis (H1) is
very easily verified. Moreover, it can be applied to
many nonlinear systems rather than some special
nonholonomic systems. Two illustrated examples
will be given to validate the effectiveness of our
approaches.

2. PRELIMINARIES

2.1 o-processing: dilation and augmented systems

In this subsection, the definition of dilation on a
Euclidean space will be reviewed and extended to the
case of matrices. We will use it to define the

augmented system given in (3)-(4). Throughout this
paper, let R denote the set of all nxm matrices
and D" =diag(r,,r,, --,r,) denote the diagonal

matrix with respect to a vector
r=(n,ry,,r,)eR". Inthe following, let us recall

and extend the definition of the dilation given in
present literature to the case of matrices.

Definition 1: Let v=(v,v,,,v,) eR" . A

dilation A :R" ->R" on R" is defined by
assigning n real numbers r = (1,5, --,7,) and a
nonzero real number ¢ such that

ANy =(",d"v,, 8"y, Similarly, let

A=(a;)eR"™™ . A dilation A} :R"™™ — R"™™ on

R™™ is defined by assigning n+m real numbers
r=(,r,,r,) and s=(s;,$,,":",s,), and a real

number ¢ # 0 such that A74=(""a,;). [ ]

The following lemma gives a basic property of the
dilation. The proof is omitted since it is
straightforward.

Lemma I: Let veR", weR" and 4 € R™™ such
that Aw=v. Then, for any vector (r,s) € R" x R",

the following equation holds:
(AZA AN, w=Av. (5)

In the following, we would like to define a
augmented system of the form (3)-(4) for the system
(1)-(2) using the concept of dilation. Consider the

system (1)-(2). Let g:R"™ xR™ —[0,00) be any
continuous  function. For any initial state
(x,(0),x,(0)) and any positive constant k , define
the function 4 by

A1) = pi(x,(0), x, (0))e ™. (6)
Thus, 4 =—kA by the direct computation. Now, let
us apply the o-processing for the system (1)-(2) to

derive a augmented system of the form (3)-(4)
(Astolfi, 1996). Assume that u(x,(0),x,(0))=0
temporarily.  Then, A(f)=0,v¢>0 . Let
(r,5) e R™ xR™ be any vector. Define new state
variables (X,,x,) and new control variables (u,,u,)

as in the following:

X =x /A u=u /A, x,=A),x,,

u, =A\, u,. (7
Then, by the direct computation, we have

- Ax X _ —

xl :—171+71:(k1+141)x1+31u1~ (8)

in view of equation (1) and the fact A=—kA. Let
A and BJ® be two matrix-valued functions defined
as in the following:

A;’r (V» w, é/) = Alir/gAz (é, v, é/ W)9
Bzm("sw»é’):Arls/ng(é’V»é,W)a ©)
for allveR™ ,we‘ﬁ’”‘,é’e‘ﬁ—{O}. Then, it can be

checked that the following equations hold:

P A . re

Xy = _ZD (A} ;%) + A, %, =kD" X,

+(A]) A, (xu))A x5+ (AT, By (xy, u))AY yu,)
=(kD" + A, (x,,u,, A)X, + B, (x,,u,, A, (10)
by Lemma 1 and the definitions of 4;" and B, . In

particular, an augmented system of the form (3)-(4)
is derived. We summarize the previous discussion
into the following lemma.

Lemma 2: Consider the system (1)-(2). Let



(r,s)eR™ xR™  be
coordinate transformation (7), it can be transformed
into a system of the form (3)-(4) for any initial state

satisfying u(x,(0),x,(0)) #0 where A, and B." are
the matrix-valued functions defined in (9). u

any vector. Using the

2.2 A preliminary result

In this subsection, the exponential stabilization for
the system (1)-(2) will be guaranteed by employing
the augmented system (3)-(4). This is a preliminary
study for our main results. To simplify the
discussion and avoid the singularity, the function u

is always chosen as g =1 in the remainder of this
paper. Note that A(¢) > 0,V¢ >0, in this case. Thus,

the coordinate transformation (7) can be performed
for all initial state. In the following, a definition
about the x -exponential stability is reviewed
(Sordalen and Egeland, 1995).

Definition 2: The equilibrium point x=0 of
x= f(t,x) is weakly globally x -exponentially
stable if there exist a strictly increasing continuous
function « :[0,0) —[0,0) and a positive constant

o such that

[x(0)] < a(x(0))e ", Vi =0, Vx(0) e R". (11)
In addition to «(0) =0, it is said that the equilibrium
point x =0 is globally x -exponentially stable. M

In the following, we want to show that the weak
global K -exponential stability can be achieved for
the system (1)-(2). To this end, we need the
following hypothesis for augmented systems of the
form (3)-(4).

(H2) Suppose there exist a constant k >0, n, +m,

positive real numbers r=(r,r,,--,r, ) and
5 =(81,8,,,5, ) , with 21 and s, 21 for all
i,j such that with the controller chosen as
(wy,u,)=( B,(x,,X,), B,(x,%,)) , all solutions of
the closed-loop system of the augmented system (3)-

(4) are uniformly globally bounded where 4," and

B}® are the matrix-valued functions defined in (9).

Proposition 1: Consider the system (1)-(2). Let 1 be
chosen as in the equation (6) with gz =1. Suppose

hypothesis (H2) holds. Choose the controller as in
the following

r s x r
u = AP (—-5 A ,x,) and u, = A ﬂz(jaAulxz)

A
A
(12)
Then, the origin of the closed-loop system is weakly
globally K -exponentially stable.

Proof: Note that A, A,w=w,YweR" , by the

definition of dilation. From this and using the
coordinate transformation (7), we have

_ u _ _ . _
U, :71: Bi(x,,x,) and u, = A u, = B,(x,X,).

By Lemma 2, the system (1)-(2) can be transformed
into the augmented system (3)-(4). In view of
hypothesis (H2), all solutions of the closed-loop
system of (3)-(4) are uniformly globally bounded.
This implies that there is a strictly increasing
continuous function « :[0,90) — [0,%0) such that

(%, (1), %, (1))| < a(((%,(0), %, (O))]), V£ >0, (13)
see (Khalil, 1996) for example. Since A(f) =e ™ <1
and r, >1 by definitions, the inequality A(¢)" < A(¢)
holds, Vt >0, Vi=1,2,---,n, . This results in
|Gey (1), %, ()] =%, (1), &, %, ()| <[(F, (1), 5, ()2
< a(|(x,(0), x, (0))e ™™, Vt 2 0. (14)

in view of the inequality (14) and the fact
(x,(0),x,(0)) = (x,(0),x,(0)) . Thus, the origin of

the closed-loop system is weakly globally x -
exponentially stable. This completes the proof. [ |

Remark 1: In next section, it will be shown that a
linear controller (u,,u,)=(f,(x,,X,),5,(X,,X,)) can
be given such that Hypothesis (H2) holds. More
explicitly, it will take the form:

By =c+KX, and S, =K,X,, (15)
for some ceR",K, e R™™ and K, e R™™" .
Then, the controller (u,,u,) of the original system
can be explicitly given by

u, =cA+ K x
and uy, =N, (K,A) ) x,) = (A7 K, )x, (16)
in view of the equation (12) and Lemma 1. [ ]

Remark 2: In Proposition 1, the function u is
chosen as ¢z =1. For the other choice of y, a similar
result also holds for all initial states satisfying
1(x,(0),x,(0)) = 0. However, the controller given in
(12)  cannot  Dbe
S = {(xl,x2 )|;t(x1 ,Xy) = 0} in general. u

defined on the set

3. GLOBAL EXPONENTIAL STABILITY

We have shown that the exponential stabilization of
system (1)-(2) can be guaranteed using the o-
processing and the hypothesis (H2) in previous
section. As it was introduced in Section 1, the
hypothesis (H1) will be used to check the hypothesis

(H2). Note that, the functions 4, and B)® given in
(9) can only defined on R" xR"™ xR —{0}. Thus,
the following regularity hypothesis is necessary to
employ hypothesis (H1).

(H3) Suppose there exist n, +m, positive real
numbers r = (r,r,,---,7, ) and s =(s,8,,"-,8, ) ,
with 7, 21 and s, >1 forall i, j, such that the limits

lim A7 (x,u,,0) (=47 (v,w,0))

C=0,x)>v,u;—>w



and lim

£—0,x;>v,uHw

B} (x,,u,,¢) (=B, (v,w,0))
exist, forall veR™ and we R™ .

Remark 3: Let us give a brief discussion about the
verification of (H3). On practical applications, it is
usually appeared that functions A4, (x,,u,) and
B, (x;,u,) both are analytic matrix-valued functions.
Then, they can be decomposed as

A, =A4,+ A and B, =B, +B,,
by using their Taylor expansions at (0,0) where the
matrix-valued functions A,(x,,u,) and B;(x,,u,)

are consisting of the lowest order terms appearing in
the Taylor expansion, respectively. Thus, it can be

seen that elements of 4, (x,,u,) and B,(x,,u,) are
all homogeneous polynomials. Let d, (4)) and
d, (B.) denote the degrees of the (i) entry of
Ay (x,,u,) and B, (x,,u,) , respectively. We define
d, = for the zero function. Then, it is possible to
show that the hypothesis (H3) holds if and only if the
inequalities 7, —7, <d, (4;) and 7, —s. <d.(B))

hold forall 1<i,j<n,,1<j<m,. ]

In view of hypothesis (H3), 4, and B}’ are

continuous functions defined on R" xR™ xR now.
Before state the main theorem, the following
technique lemma is necessary. The proof is standard
and we refer readers to the book of Khalil (1996) for
details.

Lemma 3: Consider the following time-varying
system

x=(A4+ B(x,1))x. 17)
Let 4 :[0,00)x[0,00) — [0,%0) be a function such that,
for each fixed 7, the function A(7,f) is increasing
w.r.t. n and, for each fixed 77, the function %(17,?) is
decreasing w.r.t. ¢ and h(7;,t) >0 as t—>oo .
Suppose 4 is a stable matrix and
|B(x(t),0)| < h(|x(0),t) , for all t>0 and all
solutions x(z) of (17). Then, all solutions of (17) are
uniformly globally bounded. ]

Now, we are in a position to give the main result.

Theorem 1: Consider the system (1)-(2). Suppose
there exists a positive constant k& such that

hypotheses (H1) and (H3) hold where 4," and B.°
are the matrix-valued functions defined as in (9). Let
A =e™ . Then, there exist a vector ¢ € R" , two
matrices K, € R™™" and K, € R™™ such that with
the controller (u,,u,) chosen as in (16), the origin of

the closed-loop system is weakly globally « -
exponentially stable.

Proof: Let a, b, r and s be the vectors given in
hypotheses (H1) and (H3). Consider the augmented

system (3)-(4). We want to show that hypothesis (H2)
holds with the functions S, and S, taken the form

(15). Let us define a new coordinate by
X, =x,—aand 4, =u, —b . Replacing x, and u, by
x, and u,, respectively, the equation (3) still holds in
view of the equation (k/ + 4,)a+ B, b=0. Let

A, =kD" + AY (a,b,0) and B, = By (a,b,0) . By
hypothesis  (H1), there exist two matrices
K, e R™™ and K, € R"™™ such that the matrices
kI+ 4, +BK, and A, +B,K, are both stable
Choose  the (@,,u,) as
(,,u,) =(K,X,,K,x,). Then, the controller (u,,u,)
is in the form of (15) with ¢ =b—-K,a . Thus, the
controller (u,,u,) can be given as in (16) by the

discussion in Remark 1. Define the state
x = (X,,X,) and two matrices in the following

kI+A4,+BK, 0 n 00
A= s B(xaé/): >
0 B,

0 A4, +B,K,
where

B, =4 (X, +a,Kx, +b,{)— A (a,b,0)
+(B; (x, +a,K,x, +b,{)— B, (a,b,0))K,.

Then, A is also a stable matrix and the closed-loop
system of the system (3)-(4) can be written into the

equation (17) with B = B(x,e ™). Note that B(x,¢)
and ¢ .
kI + A4, + B,K, is stable, every solution x,(z) of
%, = (kI + 4, + B,K))%,

|5 ()< oy

matrices. controller

is only the function of x, Since

satisfies the inequality

X, (0)| for some positive constants

o, and o, Define a function

h:[0,00)x[0,00) —[0,00) as in the following
h(n,t) = sup{Hé(x, g)‘” %] < oye o |g < e }

By the definition of B, it is easy to see that

n 1%)n{‘l . é(x, ¢ )” = (. This implies that for each fixed

n, h(n,t) > 0 as t - . Moreover, for each fixed
t, the function A(#,t) is increasing w.r.t.  and, for
each fixed 7, the function 4(7,?) is decreasing w.r.t.
t . By the definitions of # and B , we have
|B(x(2),0)| < h(|x(0)|,1) , for all £>0. Note that the

boundedness of (x,(¢),x,(#)) is equivalent to the

boundedness of (x,(z),x,(¢)) because of X, =X, —a

by definition. Thus, all solutions of the closed-loop
system of (3)-(4) are uniformly globally bounded in
view of Lemma 3. In particular, the hypothesis (H2)
holds and the theorem follows from Proposition 1.
This completes the proof. u

Remark 4: In nonlinear systems theory, a well-
known theorem says that the local exponential
stability of a nonlinear system can be guarantee when
its linearized system is stable. Theorem 1 gives a
similar criterion. Indeed, consider the linearized



system of (3)-(4) (with 1=0) at (X,,X,) =(a,0)
and (u;,u,) = (b,0) in the following

%= (kI + 4%, + B, i, (18)

X, =(kD" + A" (a,b,0) )x, + By" (a,0,0) u,. (19)
Then, the hypothesis (H1) says that the linearized
system (18)-(19) is stabilizable. Thus, roughly
speaking, Theorem 1 tell us that the original system
is exponentially stabilizable when the linearized
system (18)-(19) is stabilizable. In particular, the
exponential stability is independent on the nonlinear
terms
Ay (%, u,A)— Ay (a,b,0) 5 By (x,,u,,A)— B; (a,b,0) .
From the point of view above, the proposed
controller has the robustness w.r.t. some nonlinear

uncertainties. We refer readers to (Laiou and Astolfi,
1999) for a further discussion. |

In the following, we would like to give a simplified
criterion to check the hypothesis (H1). Usually, a
stronger condition-controllability than the stability
can be guaranteed on practical applications. In this
case, it is well-known that (4, B) is controllable if
and only if (kI + A4,B) is controllable for any

constant k . In particular, the hypothesis (H1) holds
under the following hypothesis.

(H4)
exists a

Suppose (4,,B,) is controllable and there

positive constant &k , a vector

(a,b) e R" xR™ such that (k[ +4,)a+B b=0
and (kD" + A (a,b,0), B, (a,b,0)) is controllable.

In view of (H4), the following corollary is
readable from Theorem 1.

Corollary 1: The same result as stated in Theorem 1
holds when the hypothesis (H1) is replaced by the
hypothesis (H4). ]

Remark 5: So far, it seems that an explicit controller
was not given in this paper. In fact, there are many
well-established methods can be employed to find a
stable controller under the controllability condition in
linear system theory, e.g., the pole-placement method,
the LQG method, e.t.c.. Then, the controller of
systems (1)-(2) can be chosen as in (15) with
c=b—-K,a, and K, and K, are the corresponding

stable feedback gain. ]

4. TWO EXAMPLES FROM NONHOLONOMIC
SYSTEM

In this section, two well-known examples from
nonholonomic systems will be proposed and show
that they can be described or transformed into a
system of the form (1)-(2). Moreover, the hypotheses
(H3) and (H4) hold for these systems. Thus, the
exponential stability can be achieved by using
Corollary 1. For these systems, (4,,B,) are all in the

controllable canonical form (CCF). Thus, the main
task is to check the controllability of

(kD" + 4] (a,b,0),B; (a,b,0) ) .

4.1 Chained systems

Consider the following chained system

Vo =,

y, =i (20)

Vi=Yiuy,i=Ln—1,
see (Murray and Sastry, 1993). We want to show
that the chained system (20) can be described into a
system of the form (1)-(2). Moreover, hypotheses
(H3) and (H4) also hold. We divide the verification
procedure into the following steps.

Step 1: (Transformation) Let x, =y, and
x, =¥, V5> ,)" . Then, the system (20) can be
transformed into the form (1)-(2) where 4, =0,
B, =1, B,=B,=(0,---,01)" , 4,=uA4, and

(4,,B,) is in CCF.

Step 2: (Choosing parameters) Let 7 = (n,---,2,1),
s=1,a=nand b=-kn, Vk>0, Vn=0. Then,
D" =diag(n,---,2,1) and (kI + 4))a+B,b=0.

Step 3: (Computing 4;" and B.’, see (9)) By direct

computation, 4, (v,w,{) = A}, 4,(Sv,iw) = wA,
and By (v,w,0) =AY, B,(¢v,{w) = B, Then,
hypothesis (H3) holds.

Step 4: (Checking the controllability) Let
A, =kD" + 4} (a,b,0) = kD" — knA, and
B, =B} (a,b,0)=B, . The determinant of

controllability matrix can be computed as
det([B,, 4,B,.++, 4} B, ) = (~kn)"""> 0. Thus

(4,,B,) is controllable.

Particularly, the hypothesis (H4) holds. Thus, the
exponential stability can be achieved by using
Corollary 1. A similar procedure will be applied to
another example. Due to a limit space, only steps 1-4
are listed. The detailed discussion is omitted.

4.2 A planar rigid body with a point mass

Consider a planar rigid body with a point mass
(Reyhanoglu, et al., 1998):

0=u,
X=v
L (21)
y=v,

§ = —v, cos(0) — v, sin(0) + s0°.



Step 1: (Transformation) Let x, = (9,9)T and
0) sin(d

vy =| @ O h o
—sin(@) cos(d)

Define X, = (X,, X5, Xy5, X5, X55,X5)  Where
(leaxzz)T =U(0) (x, y)T 5 (x5 =x24)T =U(0) (v, y)T
and (xy5,X5)" = (5,8)" +(xy,Xp)" .

Let u, =U(@)(v,,v,)" . Then, the system (21) is
feedback equivalent to the system (1)-(2) where

01 r .
A4 = , B, =(0)1)" , the matrix-valued

0 0

functions 4, and B, are given in the following:
0 6100 0] 0 0]
-60 0100 0 0

.10 006 00 10

A4,(0) = : , B, =
0 0-60 000 0 1
0 600 01 00
-0 0 6 60 | L0 0]

Step 2: (Choosing parameters) Let » = (2,1,2,1,2,2)
and s =(2)), a=(n,~kn)" and b=k’n, Vk >0,
vn#0 Then, D" =diag(2,1,2,1,2,2) and
(kI +4)a+B,b=0.

Step 3: (Computing 4, and B’ ) Letv=(v,,v,)".

Then, B} =B, and A4, can be computed s the
following:

0 v, 1 0 0 0
-, 0 0 1 0 0
AT ) = 0 0 0 v, 0 0 .
0 0 -ve* 0 0 0
0 v, 0 0 0 1
_—vzzé'z 0 0 v, vi? 0 |

Then, hypothesis (H3) holds.

Step 4: (Checking the controllability) The matrix
A, =kD, + A7 (a,b,0) can be computed in the
following:

2k —kp 1 0 0 0
0 Kk 0 1 0 0

0 2k-knpo 0
0 0 k 00
—knp 0 0 2k 1
0 0 —kn 0 2k

S O O O

Let B, =B)(a,b0)=B, , b, and b, are two
column vectors such that (b,,b,)=B, . Let
b, = Ab, —2kb, , b, = A,b, —kb, +kab,
b,, = Ayb,, — kb, +kab,, and b, = A,b,, . Then,

det(b,,b,,b,,,by,,byy,b,5) =—k*n® # 0. This implies

that (4,,B,) is controllable. Particularly, the

hypothesis (H4) holds. Thus, the exponential stability
can be achieved by using Corollary 1.

5. CONCLUSION

The exponential stabilization was studied for a class
of nonlinear systems using a systematic approach. A
simple and general criterion was proposed to
guarantee the exponential stability. Several examples
from nonholonomic systems were given to validate
the effectiveness of the proposed result. The future
work may toward to extending the result given in this
paper to more general nonlinear systems and finding
a geometry condition to assert that a nonlinear
system can be transformed to a system in the form
(1)-(2) and satisfying the hypotheses (H3)-(H4).
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