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Abstract: This paper examines two classes of algorithms that estimate a continuous time ARX
type of models from discrete data: one is based on infinite impulse response (IIR) filters while
the other is based on finite impulse response (FIR) filters. The IIR filters use continuous time
state variable filters, and discretisation is performed on the filtered derivatives. In contrast,
the FIR filters are in a discrete form with carefully chosen coefficients to approximate the
derivatives of the continuous time variables. The strength and weakness of each approach are
discussed and demonstrated by a set of simulation examples.
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1. INTRODUCTION

Continuous time system identification has been stud-
ied in the literature over a three decade period, see for
instance: Young (1981), Gawthrop (1982),Gawthrop
(1984b),Gawthrop(1984a), Unbehauen and Rao (1987),
Gawthrop (1987), Gawthrop et al. (1989), Unbehauen
and Rao (1990), Sinha and Rao (1991)Söderström
et al. (1997), Gawthrop and Wang (2000) and Wang
and Gawthrop (2001). In comparison with the discrete
time counterpart, continuous time system identifica-
tion raises several technical issues. The key point is re-
lated to implementation: at first sight, the least squares
problem for direct parameter estimation involves dif-
ferentiation of both input and output signals. There
are a number of ways of avoiding the physically-
unrealisable differentiation:

(1) discard the continuous-time approach and use
a discrete-time formulation instead – this is a

1 Author for correspondence

common approach but the apparent advantages
are arguably illusory

(2) use the δ operator approach (Gawthrop, 1980;
Middleton and Goodwin, 1990)

(3) reformulate the system equations into a realis-
able form whilst retaining the same parameter-
isation and a linear-in-the-parameters form – the
state-variable filter approach (Young, 1981; Un-
behauen and Rao, 1987) is one such reformula-
tion

(4) approximate the derivatives using FIR (finite-
impulse response) digital filters (Söderström et
al., 1997).

This paper compares and contrasts the latter two ap-
proaches.

The class of continuous-time systems considered is of
the form:

y0
� b

�
s �

a
�
s � u0 � d

�
s �

a
�
s � (1)

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



where u0 and y0 are the system input and output re-
spectively, s is the Laplace operator, b � s �

a � s � is the sys-

tem transfer function and d
�
s � represents the effect of

system initial conditions. In practical situations, the
system input and output are subject to measurement
noise. This is represented here by assuming the mea-
sured system input (u) and output (y) are given by:

u � u0 � vu (2)

y � y0 � vy (3)

where vy and vu are white noise processes with vari-
ance σy and σu respectively.

Combining equations (1)–(3) gives:

y � b
�
s �

a
�
s � u � d

�
s �

a
�
s � � a

�
s � vy � b

�
s � vu

a
�
s � (4)

Using standard spectral factorisation results Equation
(4) can be rewritten as:

y � b
�
s �

a
�
s � u � d

�
s �

a
�
s � � e

�
s �

a
�
s � v (5)

where v is unit variance white noise and:

e
�
s � e � � s � � σ2

ya
�
s � a � � s � � σ2

ub
�
s � b � � s � (6)

Note that if the system is stable and σu
� 0 then

e
�
s � � σya

�
s � .

The model structure (5) is to be used in this study. Due
to lack of space, the theoretical implications of (1) –
(6) are not explored further in this paper.

2. PARAMETER ESTIMATION

This section describes the parameter estimation al-
gorithms used in this study. The filter specific parts
are described in Sections 2.1 and 2.2 and the parts
of the algorithm that are common to the IIR and FIR
approaches are then described.

2.1 FIR filter approach

The FIR approach to the estimation of ARX models
is given by Söderström et al. (1997). The purpose of
the FIR filters is to generate approximate derivatives
of the signal in special forms to overcome bias.

Consider the sampled signal wi where 1 � i � N and
define the N � m � 1 � m matrix W

W �
���
�

w wm � 1 	
	�	 w1

wm � 1 wm 	
	�	 w2	
	�		�	
	
	
	�	
wN wN � 1 	
	�	 wN � m � 1

����
� (7)

together with the n � m matrix F of filter coefficients.
Then the N � m � 1 � n matrix Xw is given by

Xw
� WFT (8)

By appropriate choice of F , the i jth row of Xw is an
approximation to the n � 1 � jth derivative of w at

sample instant i. In other words, the first column of Xw

contains an approximation to dnw
dwn and the last column

contains an approximation to w.

The key result of Söderström et al. (1997) is that
by careful choice of FIR coefficients, the bias in
the resulting estimates can be reduced. A number of
choices of coefficients are examined by Söderström
et al. (1997) one choice that is recommended when
n � 2 is the version “ZF1” of Table I of (Söderström
et al., 1997). This choice corresponds to the matrix:

F �
�� � 2 7 � 8 3 0 0 0

0 0 0 0 	 2047 0 	 8860 � 1 	 3860 0 	 2953
0 0 1 0 0 0 0

��

2.2 IIR filter approach

Suppose that an all-pole filter having denominator
C

�
s � � sn � 1 � cnsn � cn � 1sn � 1 ��	�	�	 � c0 is selected

for the identification procedure. By passing both input
and output measurements u

�
t � and y

�
t � through this

filter, we obtain filtered input and output signals. This
operation when applied to the model of Equation 5
yields

a
�
s �

c
�
s � y � b

�
s �

c
�
s � u � d

�
s �

c
�
s � � e

�
s �

c
�
s � v (9)

Here the filter operation is equivalent to the prefilter-
ing operation in discrete time system save that in the
continuous time case, the filter structure is restricted
to all pole form.

To formulate a least squares problem for parameter
estimation, the next step is to generate the derivatives
of the filtered input and output responses. This step is
simplified when a state variable filter implementation
procedure is used (Gawthrop, 1987; Gawthrop, 1984a;
Gawthrop, 1984b). Let ȳn

�
t � , ȳn � 1

�
t � , 	�	�	 , ȳ0

�
t � de-

note, respectively, pn

c � p � y �
t � , pn � 1

c � p � y �
t � , 	�	�	 , 1

c � p � y � t � ; let

ūn
�
t � , ūn � 1

�
t � , 	
	�	 , ū0

�
t � denote, respectively, pn

c � p � u �
t � ,

pn � 1

c � p � u �
t � , 	
	�	 , 1

c � p � u �
t � . To obtain the derivatives of

filtered output responses, we define a state variable
vector

Xy � t � ��� ȳn
�
t � ȳn � 1

�
t � 	�	
	 ȳ0

�
t ��� T

Then, by choosing the state space model in a control
canonical form, we have

�������
�

dȳn
�
t �

dt
dȳn � 1

�
t �

dt���
�
dȳ0

�
t �

dt

��������
�

�
���
�
� cn � cn � 1 	�	
	 � c0

1 0 	�	
	 0�
���
0 	
	�	 1 0

����
�
���
�

ȳn
�
t �

ȳn � 1
�
t ��
���

ȳ0
�
t �

����
� �

���
�

1
0	
	�	
0

����
� y

�
t �

� G

���
�

ȳn
�
t �

ȳn � 1
�
t �	�	
	

ȳ0
�
t �

����
� � Ky

�
t � (10)



The solution of the state space equation (10), assum-
ing zero initial conditions, gives the derivatives of the
filtered output responses. Similarly, define

Xu � t � � � ūn
�
t � ūn � 1

�
t � 	�	
	 ū0

�
t ��� T

and
X z � t � � � zn

�
t � zn � 1

�
t � 	
	�	 z0

�
t � � T

X z � t � will be used to capture the initial conditions
of the state variables (when necessary). These state
variables satisfy the following differential equations,
respectively:

Ẋu � t � � GXu � t � � Ku
�
t �

Xu � 0 � � 0n (11)

Ẋ z � t � � GX z � t �
X z � 0 � � In (12)

where 0n is a zero column vector of length n and In is a
column vector of length n with the first element unity
and the rest zero.

From Equation 9, it can be seen that the best choice
for c

�
s � is e

�
s � . However, e

�
s � is dependent on the

(unknown) system and is thus not known a-priori. One
possibility is to adjust c

�
s � in an iterative fashion – for

simplicity this is not done here.

2.3 The common algorithm

In each case, the measured output y is filtered to give
the output data vector

Xy
� �

yny yny � 1 	
	�	 y0 � T
(13)

Where (as discussed in Sections 2.1 and 2.2) y j is
related to the jth derivative of the output measurement
s jy.

According to context, the measured input u may also
be filtered to give the input data vector:

Xu
� �

unu unu � 1 	�	�	 u0 � T
(14)

In the SVF case, the transient signal Xt is also gener-
ated

Xt
� �

znz � 1 znz � 1 	
	�	 u0 � T
(15)

In this study, the ordinary least-squared method is
used to extract parameters from the filtered data. As
briefly discussed in Section 3.2, more sophisticated
approaches would yield better results.

3. APPARENT STRENGTHS AND
WEAKNESSES OF EACH APPROACH

The apparent strengths and weaknesses of the two
approaches are informally discussed in the following
sections. Section 4 provides a simulation study which
verifies the expected behaviour suggested in this sec-
tion.

3.1 The FIR Approach

As discussed by Söderström et al. (1997), the FIR
approach assumes that the measured signals y and u
are smooth enough to be differentiated the appropriate
number of times. Thus, in principle, good performance
is not expected if (in Equations 2 and 3) σy � 0 or
σu � 0.

Although the FIR approach of Söderström et al.
(1997) is very much designed for pure AR processes,
it would be reasonable to suppose that it would per-
form well on the deterministic process defined by
Equation 5 when both σy and σu are zero.

3.2 The IIR Approach

As discussed in Section 2.2, the effective noise is
white only if c

�
s � � e

�
s � . If this is not true, then it

would be expected that the parameter estimates would
be biased. This bias depends on the signal to noise
ratio at the system input and output.

In fact, this bias can be overcome using IV meth-
ods (Young and Jakeman, 1979; Jakeman and Young,
1979; Young and Jakeman, 1980); but this is not pur-
sued further here.

4. SIMULATION STUDY
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Fig. 1. Step data: σy
� σu

� 0

A simulation study was carried out to evaluate the
performance of the two approaches in a number of
cases. In each case:

� a
�
s � � s2 � 2s � 2 (as also used by (Söderström

et al., 1997)).� b
�
s � � 5
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Fig. 2. Transient data: σy
� σu
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Fig. 3. AR data: σy
� σu

� 0

Data Filter a1 a2 b1 b2

step IIR 2.00 2.00 0.00 5.00
step FIR 1.92 1.96 0.00 4.91
free IIR 2.00 2.00 – –
free FIR 1.96 2.00 – –
AR IIR -0.01 0.41 – –
AR FIR 1.88 1.94 – –

Table 1. σy
� σu

� 0

� Where random sequences were involved, the pa-
rameter estimates were (following (Söderström
et al., 1997)) averaged over 50 realisations.

Three types of data were used:

Step data where the input u was given by
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Fig. 4. Step data: σy
� 0 	 02 � σu
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Fig. 5. Transient data: σy
� 0 	 02 � σu

� 0

Data Filter a1 a2 b1 b2

step IIR 2.00 2.00 0.00 5.00
step FIR -17.44 71.44 -2.57 154.47
free IIR 2.00 2.00 – –
free FIR -19.26 5.03 – –
AR IIR -0.01 0.37 – –
AR FIR -24.17 1094.96 – –

Table 2. σy
� 0 	 02 � σu

� 0

Data Filter a1 a2 b1 b2

step IIR 1.99 2.00 0.00 4.99
step FIR 1.37 1.44 0.00 3.56

Table 3. σy
� 0 � σu

� 0 	 1
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Fig. 6. AR data: σy
� 0 	 02 � σu
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Fig. 7. Step data: σy
� 0 � σu

� 0 	 1
u �

�
0 if t � 1

1 if t � 1
(16)

and the system initial condition was zero. The sam-
ple interval was h � 0 	 01 and the total time 10 – a
total of 1000 data points.

Transient data where the input u � 0 and the system
was started from rest at y � 5. The sample interval
was h � 0 	 01 and the total time 10 – a total of 1000
data points.

AR data where the input u was unit white noise (and
not measured) and the system initial condition was
zero. The sample interval was h � 0 	 01 and the total
time 100 – a total of 10000 data points.

Three noise conditions were used

σy
� σu

� 0 no measurement noise – see Table 1 and
Figures 1–3.

σy
� 0 	 02, σu

� 0 output measurement noise – see
Table 2 and Figures 4–6.

σy
� 0, σu

� 0 	 1 input measurement noise (only rel-
evant for the step data) – see Table 3 and Figure 7.

The following conclusions may be drawn from this
study:

(1) The performance of the IIR approach is poor on
AR data but good on the rest of the data – with
or without measurement noise.

(2) The performance of the FIR approach is (as
indicated by (Söderström et al., 1997)) excellent
on the AR data, and good on the rest of the data,
when σy

� 0. However the performance is very
poor when σu � 0.

In fact, further studies (not shown) show that the IIR
approach gracefully degrades as σy and σu increase.

5. EXTRUDER DATA
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Fig. 8. Extruder data

Data Filter a1 a2 b1 b2

Extruder IIR 11.56 33.29 8.10 31.46

Table 4. Extruder data

The food extruder under study belongs to Food Sci-
ence Australia. An extrusion cooker simultaneously
transports, mixes, shapes, stretches and shears mate-
rial under elevated pressure and temperature. More
details are given by Wang and Gawthrop (2001). For
this particular case study, the manipulated variable is
screw speed and the output variable is specific me-
chanical energy (SME). The process sampling interval
was chosen as 1 sec. and samples of input and output
variables were collected in the experiment.



Presumably because the input and output data was
noisy, it proved impossible to get sensible results using
the FIR approach. The IIR approach was used to
estimate the parameters of the following polynomials

a
�
s � � s2 � a1s � a2

b
�
s � � b

�
s2 � b1s � b2 �

d
�
s � � d1s � d2

(17)

The values of d1 and d2 are of no direct interest, but
are needed to correctly identify a

�
s � and b

�
s � .

Figure 8 shows the following data:

(1) the upper graph is the measured system output
(SME) together with the value of SME predicted
from the estimated model and the measured sys-
tem input (Screw Speed).

(2) the lower graph is the measured input (Screw
Speed).

Table 4 gives the estimated parameter values.

Because of the close fit to the data, this model is
regarded as accurate.

6. CONCLUSION

Given the backgrounds of the two approaches, it is
hardly surprising that the FIR method works well on
AR data and the IIR method on deterministic data with
added noise. More interesting are the two cases where
the methods do not work

(1) the FIR approach in the presence of measure-
ment noise and

(2) the IIR approach when using AR data

We believe that the way forward involves a melding of
the two approaches by either:

(1) adding further filtering to the FIR approach to
remove high-frequency measurement noise or

(2) extending the synthesis approach of (Söderström
et al., 1997) to reduce bias in the IIR case.

It should also be emphasised that the IIR method
could also be improved by making use of an unbiased
approach such as instrumental variables (Young and
Jakeman, 1979; Jakeman and Young, 1979; Young and
Jakeman, 1980) to replace the least-squares method.
This, together with a theoretical interpretation of our
results, will be the subject of future work.
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