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Abstract: Considering one of the most popular examples of flat system, namely the 
two dimensional crane, this paper shows how bicausality can be used in order to 
analyse its bond graph model as far as flatness is concerned. More generally, it will 
be seen how applying this concept both allows verifying the flatness property of a 
system and deriving the open-loop control laws that result from it in a systematic 
fashion, provided that flat outputs have been identified. Copyright   2002 IFAC 
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1. INTRODUCTION 

The issue of flatness from a bond graph point of view 
has already been addressed by Gil, et al. (1997). The 
method described in that contribution, which aims at 
determining the flatness property directly on a bond 
graph model, is based upon the analysis of causal 
paths between the inputs as well as the state variables 
on the one hand, and the candidate flat outputs on the 
other hand. It is restricted, however, to SISO 
systems. Moreover, it does only work in the case 
where flat outputs are state variables. The purpose of 
the present paper is to propose a more general 
approach. When searching for a structural way to 
verify flatness from a bond graph, one could first 
think of the notion of relative degrees, since flatness 
has to do with input-output invertibility. Thus a 
necessary condition for a system to be flat is that the 
relative degree associated with each of its input-flat 
output pairs be equal to its order. Now there exist 
systematic methods to determine relative degrees 
from bond graphs given a preferred integral causality 
assignment (Wu and Youcef-Toumi, 1993). 
Unfortunately, the previous condition is not sufficient 
since flatness also implies some kind of state-output 
invertibility, as will be seen in the next section. As a 
consequence, it seems that the most relevant answer 
to the question of flatness is provided by the notion 
of inverse dynamics (Gawthrop, 1998). Now this 
notion is strongly related to the concept of 
bicausality, introduced by Gawthrop (1995). It is why 
the latter concept will be investigated as a tool to 
analyse the flatness of systems modelled by bond 
graphs. The paper is organized as follows. In section 
2, some background is given about flatness, then 

about bond graph modelling and finally about 
bicausality. Section 3 illustrates the proposed 
analysis approach through the famous example of a 
2-D crane, which is first studied in a basic context 
before being refined in section 4. Lastly a general 
methodology is deduced in section 5. 

2. BACKGROUND 

2.1 Differential flatness 

The concept of differential flatness was introduced 
by Fliess et al. as a new nonlinear extension of 
Kalman’s controllability. Flat systems, indeed, are 
equivalent to linear controllable ones via a special 
type of feedback called endogenous (Fliess, et al., 
1995). As a consequence, such systems are 
controllable whether they are linear or not. It is very 
important a result since many systems met in various 
engineering fields actually are flat (Rudolph, 1999). 

Let now briefly recall the mathematical definition of 
this notion. Consider a nonlinear multivariable 
system characterized by the following generalized 
state representation: 

 ( )uxfx ,=�  (1) 

where ∈x �
n denotes the state vector and ∈u �

m the 
input one. 

This system is called (differentially) flat if there 

exists a new vector ( )( )αuuuxhy ,,,, ��= , where 

∈y �
m and ∈α �, such that there exist two 
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functions A and B, as well as an integer β , verifying 

the double property 
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Vector y is called a flat (or linearizing) output. It has 
the same dimension as input vector u, and its 
components are differentially independent real-
analytic functions of x, u and a finite number of its 
time derivatives. Besides, it generally has a well 
defined physical meaning, although there is no 
uniqueness in its choice. The major property about it 
is that any variable of the system can be expressed as 
a differential function of its components, and thus 
calculated without integration of the differential 
equation governing the system. 

Several important implications of flatness exist as far 
as control is concerned. The most obvious one is 
motion planning. Indeed, any desired trajectory of the 
linearizing output can be obtained in a 
straightforward manner via an open-loop control, 
since x and u trajectories are exactly and explicitly 
deduced from y ones. By another way, closed-loop 
strategies can be easily applied in order to control a 
flat system, since the latter can be transformed into a 
linear controllable one in Brunovsky canonical form, 
namely 

 ( ) vy =+1β  (3) 

where v is the new input vector, by means of an 
endogenous feedback (Rotella and Carillo, 1999). 

To date, there exists however no systematic method 
to determine the flatness of a system. 

2.2 Bond graph modelling 

Bond graph is a modelling tool which yields a 
lumped parameters graphical description of energy 
exchanges in dynamic systems. Each elementary 
energy transfer is represented by means of a bond 
with an half array indicating its conventional 
direction, as depicted in figure 1. Two variables are 
associated with each bond, namely the effort e and 
the flow f, the product of which gives the power 
transferred. See (Karnopp, et al., 1990; Borne, et al., 
1992) for an in-depth description. 
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Fig.1. Bond graph representation of an elementary 
power transfer. 

This tool has proved to be particularly convenient to 
deal with multidisciplinary systems, since it is 
characterized by a unique and reduced formalism 
whatever the physical field of interest may be. Thus 
any model can be put in the generic form of figure 2. 

Given such a bond graph, a structural analysis can be 
performed, as well as a generation of its symbolic 
equations, thanks to the essential notion of causality 
which provides physical models with a 
computational input-output structure (Sueur and 
Dauphin-Tanguy, 1989; Sueur and Dauphin-Tanguy, 
1991). Standard causality is based on the principle 
that an effort imposed at one end of a bond 
necessarily implies a flow imposed at the other end. 
By convention, a causal stroke is put at the end of the 
bond where effort is imposed, as depicted in figure 3. 
Systematic procedures exist in order to achieve 
causality assignment for a whole model in a 
consistent manner. 
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Fig.2. Bond graph generic model. 
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Fig.3. Bond graph notation for standard causality. 

Using the causal orientation of bonds, state space 
representations can be systematically derived from 
possibly nonlinear bond graph models. The resulting 
equations generally have the following form: 

 ( ) ( )uxgxfx +=�  (4) 

which appears as a particular case of (1). 

This property explains why bond graph can be 
thought of as a suitable tool to analyse flatness. 

2.3 Bicausality 

The notion of bicausality was introduced by 
Gawthrop as an extension of conventional bond 
graph theory, in order to handle systems with non 
standard input-output patterns (Gawthrop, 1995). In 
conventional bond graph models, bonds are unicausal 
in the sense that a single causal (full) stroke is 
attached to each of them. In the context of bicausality 
instead, bonds are provided with two causal half 
strokes, which results in decoupling the effort and 
flow respective causalities. More precisely, a causal 
half stroke put on the flow side of a bond (i.e. on the 
half arrow side) means a flow imposed on the 
variable associated with the far end of this bond, 
whereas a causal half stroke put on the effort side of 
a bond means an effort imposed on the variable 
associated with the near end of this bond. With such 



a convention, unicausal bonds appear as particular 
cases of bicausal ones where both causal half strokes 
coincide. For a single bond, two different extra 
configurations can be found (besides the ones of 
figure 3), which appear to be specifically bicausal. 
They are shown in figure 4, with the corresponding 
assignment statements. 
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Fig.4. Bicausal configurations for a single bond. 

Bicausality can be used to derive properties about 
inverse dynamics, state and parameter estimation. 
The inverse of a dynamic system such as addressed 
here is defined as the new system which, given the 
initial system output as its input, will exactly 
reproduce the system input as its output. It is 
therefore a question of (possibly partial) inversion 
with respect to input-output pairs. Now it has been 
demonstrated by Gawthrop that the inverse of a 
system modelled by a standard bond graph is best 
represented by a bicausal one, since only the latter 
permits all the equations of the inverse dynamics to 
be directly represented (Gawthrop, 1998). It is 
particularly true for systems with non-collocated 
input-output pairs. The same author has also 
introduced new bond graph components, namely 
source-sensor components denoted by SS, in order to 
help define inverse systems (Gawthrop and Smith, 
1992). In the context of bicausal bond graphs, these 
components provide a more convenient 
representation of the input and output ports of 
systems than standard effort and flow sources, since 
the causality on their bond is not irrevocably fixed. 
Note that one can conventionally distinguish between 
input and output SS components, by using the 
adequate direction for power (Fotsu-Ngwompo, et 
al., 1997). 

By another way, it is obvious from (2) that the proof 
for flatness has to do with system inversion. 
Moreover, it will be seen in the following that 
parameter estimation can be necessary in the process 
of inverting a nonlinear system modelled by  bond 
graphs. As a result, bicausal bond graphs associated 
with the use of SS components seem to provide a 
particularly adequate framework to study flat 
systems. 

3. BASIC EXAMPLE 

For the sake of both clarity and simplicity, the 
proposed analysis method will first be illustrated 
using an example instead of being exposed 
theoretically. Let take the case of the two 
dimensional crane displayed in figure 5, where the 

trolley travels horizontally while its load, which 
behaves like a variable length pendulum, remains in 
the fixed vertical plane of the figure. The trolley 
position D and the pendulum length R are control 
inputs.  
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Fig.5. 2-D crane. 

The corresponding basic bond graph model is shown 
in figure 6. Some geometrical constraints which 
cannot be directly represented on that bond graph 
must be joined. 
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Fig.6. Basic bond graph. 

According to the literature, couple (x, z) is a flat 
output for the system (Fliess, et al., 1995). Its two 
constitutive variables, however, do not appear as 
natural outputs of the bond graph, since they cannot 
be measured. On the other hand, their derivatives do, 
because each of them corresponds to the flow 
variable on a particular 1 junction. In order to 
measure them without disturbing the dynamic 
behaviour, source-sensor components injecting a null 
effort are added to the model. Each original 
modulated flow source is also replaced by a source-
sensor component, in order to properly represent the 
inputs of the system with a view to its coming 
inversion. As a last point, internal variable θ  is made 
implicit. The equivalent model resulting from these 
transformations is shown in figure 7. A preferred 
causality has been assigned to this model, revealing 
an apparent order of 1, due to the presence of one 
storage element with integral causality. In order to 
determine the actual order of the model, the number 
of integrations, if any, which are necessary to 



compute all the MTF moduli must be taken into 
account. Actually, D and R being given as control 
inputs, the only knowledge of x and z is needed. 
Besides, it just requires one integration, since both 
variables are related by a geometrical constraint. 
Thus the actual order of the model is 2. 
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Fig.7. Equivalent causal bond graph with SS 
components. 

Let 3p  and x be the state variables. In order to verify 

the flatness property, it must be shown that the latter 
as well as the inputs can be derived from the flat 
outputs without integrating. As for the state variables, 
it is obvious since one has xmp �=3  and xx = . As 

for the inputs, the causality of both SS elements 
corresponding to the flat outputs is modified so that 
they now inject the flow variable they used to 
measure, as well as continuing to provide a null 
effort. Thus the corresponding bonds become 
bicausal ones. Then propagation rules are used as 
defined in (Gawthrop, 1995). The result is the partly 
inverted bond graph of figure 8. 

Knowing x and z, hence x�  and z� , the unknown 

MTF modulus Dx
z

−  can be obtained from the 

partial causality assignment, as the ratio of the efforts 
which are imposed to the MTF component on both of 
its bonds. This situation illustrates the ability of 
bicausal bond graphs to allow parameter estimation, 
not only for one-port components as described in 
(Gawthrop, 1995), but also for multi-port ones. 
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Fig.8. Partial inverse bicausal bond graph. 

The expression of D is straightforwardly deduced: 
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Then the geometrical constraint yields that of R: 
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At this stage, the flatness property has been 
demonstrated. It is possible however to go further 
into the analysis. Indeed, using the previous pieces of 
information, the non standard causality assignment 
can be completed in order to define the whole inverse 
model, as depicted in figure 9. 
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Fig.9. Complete inverse bicausal bond graph. 

It can be seen that a double determination of the 
MTF modulus primarily used to find D as a function 
of x and z results from the causal assignment 
achieved. The consistency of such a situation must be 
verified. Actually, the expressions found for D and R 
yield: 
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4. MORE REFINED EXAMPLE 

Now the previous system is augmented with the 
traversing and hoisting dynamics, which implies 
taking new control inputs, namely force F and torque 
Γ, according to the bond graph of figure 10. r is the 
radius of the hoist pulley and J its inertia momentum. 
This time, the apparent order of the system is 3 and 
the actual one 6 (taking the geometrical constraint 
into account). The natural state variables (in a bond 
graph sense) are 2p , 3p  and 9p ; x, D and R (for 

instance) must be added to them. 

It has already been shown in other contributions that 
this augmented system is still flat, with unchanged 
flat outputs (D’Andréa-Novel and Levine, 1990; 
Siguerdidjane, 1998). The point here is to verify this 
property directly from the bond graph model using 
bicausality, as done just before for the basic system. 
In order to invert the new system dynamics, it can be 
proceeded the same way as previously, modifying the 
causality of both SS elements associated with the 
candidate flat outputs and propagating through the 
junction structure. 
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Fig.10. Unicausal bond graph of the augmented 
system. 
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F ig.11. Bicausal bond graph of the inverted 
augmented system. 

D and R are identically determined, and thus given 
by the same formulas (5) and (6). Then, it can be 
verified that the (bi)causal assignment is such that F 
and Γ can be deduced from the graph. Moreover, 
since all the storage elements have been imposed a 
derivative causality, the order of the inverse system is 
zero and no integration will be needed for their 
computation. 

Thus one gets: 
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Besides, the state variables are given by: 
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which demonstrates the flatness of the system with 
respect to the same couple of linearizing outputs (x, 
z). 

Once again, a double determination of the MTF 
modulus is encountered, whose consistency 
straightforwardly results from the verification made 
in the previous section. 

5. GENERALIZATION 

From the previous examples, a general methodology 
can be deduced in order to analyse the flatness of a 
system. Given a standard bond graph model, a 
sequential procedure including 3 stages is proposed: 

- First assign conventional causality to the model, 
using SCAP or any equivalent method based upon 
preferred integral causality. Identify the resulting 
state variables (p on I components, q on C 
components in integral causality, plus possibly extra 
variables in the case of modulated components such 
as MTF for instance). 

- Coming back to the acausal model, replace the 
sources by input SS components and attribute output 
SS components to the candidate flat outputs. 

- Assign the flow-source/effort-source causality to 
the output SS components and propagate as far as 
possible. Whenever the bicausal information allows 
estimating a modulated component parameter, use 
the resulting piece of knowledge to propagate again 
(by determining other modulated components 
parameters or partly imposing the causality of input 
SS components for instance). Also use any additional 
physical constraint possibly not included in the bond 
graph. 

If at the end of this step: 

- the whole model has been causally completed 
(which means that any bond has its two causal half 
strokes set), 

- no storage element has been imposed an integral 
causality, 

- the causality of the input SS components is such 
that every original input of the system now appears 
as an output of the bicausal junction structure, 



then the original system is flat with respect to the 
chosen outputs. 

In such a case indeed, the inverse system exists and 
its order is zero, which implies that any variable, 
including the original system inputs and state 
variables, can be calculated without integrating given 
its inputs (i.e. the original system outputs). In order 
to find the laws corresponding to (2), one just has to 
write the equations of the bond graph in the form 
dictated by causality. 

On the other hand, if one of the previous conditions 
is not satisfied, then it can just be concluded that the 
considered outputs are not linearizing ones for the 
system. 

6. CONCLUSION 

This contribution shows how bicausal bond graphs 
can be used to verify the flatness of a system with 
respect to identified linearizing outputs, as well as to 
derive the resulting open-loop control laws. First, 
applying a standard causality assignment to the bond 
graph model straightforwardly leads to a minimal 
state space representation. Then, respectively 
attributing SS components to the input and output 
ports, and giving an adequate bicausal assignment to 
the latter, one can build the inverse model, the order 
of which must be  zero for the original system to be 
flat. Further research will consist in investigating 
how to seek for flat outputs if any, given some 
system. 

REFERENCES 

D’Andréa-Novel, B., Levine, J. (1990). Modelling 
and Nonlinear control of an  overhead crane. In: 
Robust Control of Linear and Nonlinear 
Systems, Mathematical Theory of Networks and 
Systems (MTNS’89), Vol. 2, pp. 523-529. 

Borne, P., Dauphin-Tanguy, G., Richard, J.P., 
Rotella, F., Zamvettakis, I. (1992). Modélisation 
et Identification des processus, Tome 2, Technip. 

Fliess, M., Levine, J., Martin, P., Rouchon, P. (1995). 
Flatness and Defect of Nonlinear Systems: 
Introductory Theory and Examples. In: 
International Journal of Control, Vol. 61, No. 6, 
pp.1327-1361. 

Fotsu-Ngwompo, R., Scavarda, S., Thomasset, D. 
(1997). Physical Interpretation of Zero Dynamics 
for Linear SISO Control Systems. In: IFAC-IFIP-
IMACS Conference, Belfort, pp. 232-236. 

Gawthrop, P.J., Smith, L. (1992). Causal 
Augmentation of Bond Graphs. In: Journal of the 
Franklin Institute, 329(2), pp. 291-303. 

Gawthrop, P.J. (1995). Bicausal Bond Graphs. In: 
Proceedings of International Conference on 

Bond Graph Modeling and Simulation 
(ICBGM’95), Las Vegas, pp. 83-88. 

Gawthrop, P.J. (1998). Physical Interpretation of 
Inverse Dynamics using Bond Graphs. In: The 
Bond Graph Digest, Vol. 2. 

Gil, J.C., Pedraza A., Delgado, M. (1997). Flatness 
and Passivity from a Bond Graph. In: IEEE. 

Karnopp, D.C., Margolis, D.L., Rosenberg, R.C. 
(1990). System Dynamics : a  Unified Approach. 
Wiley Interscience, second edition. 

Rotella, F., Carillo, F.J. (1999). Flatness Approach 
for the Numerical Control of a Tuning Process. 
In: Les systèmes plats : aspects théoriques et 
pratiques, mise en œuvre, Journée thématique 
PRC-GDR Automatique, pp.143-149. 

Rudolph, J. (1999). Flatness Based Control of 
Chemical Reactors. In: Les systèmes plats : 
aspects théoriques et pratiques, mise en œuvre, 
Journée thématique PRC-GDR Automatique, 
pp.179-219. 

Siguerdidjane, H.B. (1998). Divers schémas de 
Commande Non Linéaire et Applications. In : 
Habilitation Degree from University of Paris XI. 

Sueur, C., Dauphin-Tanguy, G. (1989). Structural 
Controllability/Observability of Linear Systems 
Represented by Bond Graphs. In: Journal of the 
Franklin Institute, Vol. 326, No. 6, pp. 869-883. 

Sueur, C., Dauphin-Tanguy, G. (1991). Bond Graph 
Approach for Structural Analysis of MIMO 
Linear Systems. In: Journal of the Franklin 
Institute, Vol. 328, No. 1, pp. 55-70. 

Wu, S.T., Youcef-Toumi, K. (1993). On Relative 
Degrees and Zero Dynamics from System 
Configuration. In: Proceedings of the American 
Control Conference, San Fransisco, pp. 1025-
1029. 


