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Abstract: In this paper, a sensitivity analysis is carried out for the problem of
simultaneous estimation of induction motor’s state and parameters. This is done
using separable least squares formulation. It comes out that even in the presence of
persistent excitations, the above problem is very sensitive to noises and/or uncertain-
ties especially for one of the four possibly identifiable combinations of parameters.
Numerical experiments are conducted that confirm the a priori sensitivity-based
predictions.
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1. INTRODUCTION

In many application areas, induction motor stands
out because of inherent qualities such as robust-
ness, low cost and simplicity. while initially rec-
ognized to be difficult to control because of non-
linearities and the need for state estimation, in-
duction motor presently takes advantage of many
high quality estimation-based control schemes
(see among other works (Chiasson, 1998; Hu
et al., 1996; Balloul and Alamir, 2000; Lu and
Chen, 1995; Glielmo et al., 1994; Espinosa and
Ortega, 1994; Glumineau et al., 1993; Besançon et
al., 1996; Ahmed-Ali et al., 1999; Espinosa-Perez
et al., 1997)).

In nowadays industrial requirements, however,
good control under nominal (or even, a slightly
perturbed) model is no more sufficient. Monitor-
ing parameter variations becomes unavoidable to
maintain control performance level and, mainly,
to enable a real-time diagnosis to be performed.
Therefore, a simultaneous state/parameter esti-
mation schemes need to be considered (Alonge
et al., 2001; Sdid and Benbouzid, 2000; Be-

sanon, 2001; de Kock-JA et al., 1994; Nilsen and
Kazmierkowski, 1989; Marino et al., 1999). In all
these works, the nominal feasibility of the above
task is studied but no sensitivity analysis has
been explicitly and rogourously addressed. This
is however crucial in a realistic industrial context
characterized by unavoidable sensor noises and
model’s uncertainties.

The aim of the present paper is to address this
problem, namely, sensitivity analysis in the con-
text of induction motor’s simultaneous state and
parameters estimation. This is done according to
the following steps. First the motor’s equations
are recalled and rewritten (section 2) in a conve-
nient form in order to put the estimation prob-
lem in a somehow standard scaled separable least
squares form (Bruls et al., 1999); then a sensitivity
criterion is defined and justified (section 3). The
later is then computed for several standard config-
urations under torque/flux control. Some numeri-
cal experiments are then conducted to validate the
sensitivity-based predictions. Finally conclusions
are dressed in section 5.
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2. EQUATION REWRITING AND
PRELIMINARY RESULTS

Using R, L and M to denote resistance, induc-
tance and mutual inductance respectively, using
x = (Isα, Isβ ,Φsα,Φsβ) to designate state vector
and indices r and s to refer to rotor and stator
components respectively, the induction motor’s
dynamical model is given by

ẋ =
(
p1I + 2ΩJ p2I − 2p3J

q1I 02×2

)
x+

(
p3I
I

)
u

(1)

where p1 := −( RrσLr
+ Rs

σLs
) ; p2 := Rr

σLsLr
; p3 =

1
σLs

and q1 = −Rs (σ := 1 − M2

LsLr
, Ω stands for

the mechanical speed, I the identity in R2×2 and
J =

(
0 −1

1 0

)
).

It can readily be inferred from (1) that whatever
is the estimation scheme that may be used, only
the four combinations of parameters (q1, p1, p2, p3)
can be hopefully estimated (Besançon et al.,
2001).

By straightforward manipulations together with
systematic use of reference values for time, state
and parameters, equation (1) can readily be put
into the following scaled form :

dȳ

dt̄
=

[
p̄1Ā1(t) + p̄2Ā2(t) + p̄3Ā3(t)

]( ȳ

ξ̄
ū

)
+ Ā0(t)ȳ

(2)

dξ̄

dt̄
= q̄1Ē1(t)

(
ȳ
ū

)
+ Ē0ū (3)

where ȳ := (Isα, Isβ)T ∈ R
2 stands for the

measured scaled stator current vector while ξ̄ :=
(Φsα,Φsβ)T ∈ R

2 denote the scaled unmea-
sured stator flux vector. Note that scalling is
crucial for sensitivity-related studies (Grimstad
and Mannseth, 2000). The sensitivity analysis
proposed in this paper is based on the following
straightforward result

Lemma 1. Denote by F (t) = ˙̄y − Ā0(t)ȳ(t). The
following equation holds for all t ≥ t1[

Tp→F

(
t; t1; ξ̄1; q̄1

)]
p̄ = F (t) ∈ R2 (4)

where

Tp→F

(
t; t1; ξ̄1; q̄1

)
:=(

Ā1(t)

(
ȳ(t)
ˆ̄ξ(t)

ū(t)

)
. . . Ā3(t)

(
ȳ(t)
ˆ̄ξ(t)

ū(t)

))
(5)

ˆ̄ξ = ξ̄1 + q̄1

[
η1(t)− η1(t1)

]
+

[
η0(t)− η0(t1)

]
(6)

η̇1 = Ē1

(
ȳ
ū

)
; η̇0 = Ē0ū ; η0, η1 ∈ R2 (7)

z

Note that (6) is nothing but the solution of (3)
with initial condition ξ̄(t1) = ξ̄1 and therefore,
the following holds

Fact 1. The problem of simultaneous estimation
of states and parameters of induction motor is
solvable iff, for all [t1, t1 + Ta] there is only one
solution of (4) in the unknowns (ξ̄1, q̄1, p̄) ∈ R6. z

Using the notation

θ := ( ξ̄T1 q̄1 )T ∈ R3 (8)

and assuming that measured signals (ȳ,ū) are
acquired with a sampling rate τs > 0, it can be
inferred from fact 1 that ”practical solvability”
of the simultaneous estimation problem is related
to the solvability of the following separable least
squares that can be derived by writing (4) at
instants t1, t1 + τs, t1 + 2τs, . . . , t1 +Naτs, namely,
with obvious notations[

T̃ (t1, θ)
]
p̄ = F̃ (t1) (9)

with T̃ (t1, θ) ∈ R2Na×3 ; F̃ (t1) ∈ R2Na

Remark 2. It is worth noting that although the
least squares problem (9) is not equivalent to the
identity (4) being imposed at ”each” t ∈ [t, t +
Naτs], ”practical sensitivity analysis” on the later
can be inferred from the former provided that τs
is sufficiently small and Na is sufficiently high.
This is because, whatever is the dynamical estima-
tion scheme being used, such unavoidable finite-
precision-like limitations are to be accounted with
(finite precision integration schemes for dynamical
observers equation, sampled measurement acqui-
sition, etc.)

3. A SENSITIVITY ANALYSIS

3.1 Definition of a sensitivity criterion

It is a well known fact (Golub and Pereyra, 1973;
Bruls et al., 1999) that the solution of (9) is given
by

θopt := min
θ

∥∥∥(I − T̃ (t1, θ)T̃ †(t1, θ)
)
F̃ (t1)

∥∥∥2

(10)

popt := T̃ †(t1, θopt)F̃ (t1) (11)

where I in (10) stands for the identity matrix in
R

(2Na)×(2Na) while T̃ †(t1, θ) is the pseudo-inverse
of T̃ (t1, θ).



In order to define a consistent sensitivity crite-
ria, let us investigate what happens when mea-
surement errors occur in the acquisition process
together with approximation errors in the compu-
tation of the optimal solution of (10). This result
in the use of erroneous measures F̃true(t1)+δF̃ (t1)
in the estimation process (10)-(11) rather than the
true vector F̃true(t1). In this case, the resulting θ,
say θc is given by

θc = min
θ

∥∥∥(I − T̃ (t1, θ)T̃
†(t1, θ)

)[
F̃true(t1) + δF̃ (t1)

]∥∥∥2

+

+ δθapp

= θtrue + δθy + δθapp ; δθy = O(‖δF̃ (t1)‖)

where δθy is used to denote errors in θc due to
measurement errors δF̃ (t1) while δθapp denotes
approximation errors in solving the non convex
optimization problem (10) in the decision variable
θ. Using (11), the computed p, say pc may be given
by (using δθ = δθy + δθapp)

pc = T̃ †(t1, θtrue + δθ)[F̃true(t1) + δF̃ (t1)]

= ptrue + T̃ †(t1, θtrue)δF̃ (t1) +

+
3∑
i=1

[∂T̃ †
∂θi

(t1, θtrue)F̃ (t1)
]
δθi +O(‖δF̃ (t1)‖2)

(12)

Now, provided that persistent excitations hold,
that the relative measurement error ‖δF̃‖/‖F̃‖
is sufficiently small and that Na is big enough,
the second term in the r.h.s of (12), namely
T̃ †(t1, θtrue)δF̃ (t1), may lead to relative errors in
pc that are of the same order of magnitude than
the relative measurement errors ‖δF̃‖/‖F̃‖ [see
(11)]. No such easy arguments can be exhibited
about the third term. This is the reason why, in
this paper, attention is focused on the sensitivity
gains defined for i = 1, 2, 3

Si :=
[∂T̃ †
∂θi

(t1, θtrue)F̃ (t1)
]
∈ R3 (13)

Another way of justifying the interest carried in
these sensitivity gains is to notice that one may
write according to (12) (i = 1, 2, 3)

Si :=
∂(pc − ptrue)

∂θi
|perfect measurements (14)

that is, even under perfect measurements, Si rep-
resents the sensitivity of the estimation error pc−
ptrue to errors in the estimation of θi. These errors
may be viewed for instance as transient errors un-
der asymptotically convergent nonlinear state and
parameters observer schemes, or even, persistent
errors due to unavoidable finite, non vanishing,
integration step time used in the integration of
such simultaneous observers. In other words, Si
may be viewed as a sensitivity indicator that is

intimately linked (or even originated from) the
very simultaneous aspect of state/parameter es-
timation for induction motors.

3.2 Computational issues

Equation (13) shows that the key issue in the com-
putation of the sensitivity indicators Si defined in
the preceding section is the computation of the
gradient of the pseudo-inverse T̃ †(θ) of T̃ (θ) with
respect to the parameter θ. It has been shown in
(Golub and Pereyra, 1973) that, provided that the
gradient T̃θi(θ) are analytically given, the gradient
T̃ †θi(θ) can be analytically given by the following
expression :

T̃ †θi =−T̃ †[T̃θi ]T̃ † + T̃ †[T̃ †]>[T̃θi ]
>[I2Na − T̃ T̃ †] +

+ [I3 − T̃ †T̃ ][T̃θi ]
>[T̃ †θi ]

>T̃ † (15)

where In stands for the identity matrix in Rn×n.

Note that from (5)-(6), it can be inferred that T̃
is an affine function in the arguments ξ̄1 and q̄1

and hence in θ. therefore, T̃θi are quite easy-to-
compute matrices that are independent of θ.

As in any nonlinear problem, the sensitivity indi-
cators Si depend on the current configuration un-
der consideration. More concretely, they depend
on the least squares problem (9) which is defined
by the state and control trajectories over the time
interval [t1, t1+Naτs]. Unless going through all the
configuration space, any result one may present
necessarily represents some particular case. It is
worth noting, however, that many changes in
initial states have been tried without dramatic
changes in the main qualitative conclusions con-
cerning the sensitivity analysis.

In what follows, the conditions under which sev-
eral least squares problems (9) are constructed
(matrices T̃ (t1, θ) and F̃ (t1)) are clearly ex-
plained, then, the resulting sensitivity indicators
Si are computed. From this, some qualitative pre-
dictions are made. The later are finally confirmed
through further numerical investigations.

From a control point of view, it is well known
(Besançon et al., 1996; Espinosa-Perez et al.,
1997) that the torque/flux controlled induction
machine has a relative degree 1 (Isidori, 1989) and
a state feedback tracking control law may be easily
obtained under the form ū := K(t, ȳ, ξ̄, p̄, q̄). In-
jecting this feedback law in the system equations
(2)-(3) adding possibly an excitation term :

ū = K(t, ȳ, ξ̄, p̄, q̄) + v (16)



Ls (H) Lr (H) Rr (Ω) Rs (Ω) M (H)

0.0317 0.0323 0.052 0.07 0.031

Table 1. values of motor’s parameters

yields an autonomous system that may be in-
tegrated starting from some initial state x̄0 :=
(ȳ0, ξ̄0)T over [0, tf ] (see Figure 1). Now taking
several values for t1 in [0, tf −Naτs] and the cor-
responding θ = (ξ̄(t1), q̄1), several configurations
can be used to built the least squares problem and
compute the corresponding sensitivity indicators
Si.

t = 0 tf

(ȳ(t), ξ̄(t))

τst1 t1 +Naτs

Window for LS problem’s
construction with t1 and
θ = (ξ̄(t1), q̄1)

Fig. 1. Construction of the Least squares problems
for different t1’s

4. NUMERICAL RESULTS AND
VALIDATION

The basic simulation corresponds to the scaled
initial state

ȳ0 = (0, 1)T ; ξ̄ = (0.6, 0.8)T

The tracking problem is given by a set-point
change in the scaled torque/flux references given
by zr(t̄) = zr1 for t̄ ≤ 5 and :

zr(t̄) := zr2 + (zr1 − zr2)e−µ(t̄−5)

where zr1 := (1, 1) ; zr2 = (0.8, 1.2) and zr :=
(Γr,Ψr)T in which Γr and Ψr are scaled refer-
ences on torque and squared norm of flux vector
respectively (scaling values are 100 N.m and 1.0
Wb respectively). µ := 1 (for a time reference
value for scaling tr = 1 ms). The induction ma-
chine’s parameter values are given on table 1. The
mechanical speed Ω in (1) is constant and equals
Ω = 900 tr/min.

Reference values used in equations scaling are
given on table 2.

Acquisition parameters are Na = 100 and τs =
10µs. This corresponds to a window’s width of
1 ms which is quite compatible with system’s dy-
namics. It is worth noting that when the induction

Currents (A) Fluxes (Wb) Time (s) Control (V )

100 1 0.001 100

Table 2. values used in scaling system’s equations

machine is regulated around constant torque and
flux, there is no steady state associated to these
constant values. Currents and flux vector con-
tinuously oscillate which offer natural persistent
excitation.

Table 3 shows the values of the sensitivity indica-
tors Si ∈ R3, i = 1, 2, 3 for three different values of
t1 = 5, 8 and 14 ms. this enables to study transient
(t1 = 5 ms), near constant regulated variables
(but not measured outputs) (t1 = 8 ms) and in
completely constant regulated variables (t1 = 14
ms).

Table 4 shows the sensitivity of the same scenarios
but under the additional excitation signal [see
(16)] :

v(t̄) := 0.2
(

sin(2πt̄+ π/5)
cos(2πt̄)

)
(17)

From the examination of tables 3 and 4, the
following qualitative facts can be inferred :

• The second parameter’s combination p2 :=
Rr

σLsLr
is very sensitive to estimation errors

on θ, especially those errors affecting the
estimation of θ1 and θ2, that is, the flux
vector. Relative errors on θ1 and θ2 may be
multiplied by 3 orders of magnitude to yields
relative errors on p2.

• Under persistent excitations, relative estima-
tion errors on p3 are at most of the same
order of magnitude than those on θ (see table
4).

• Relative estimation errors on p1 are 2 orders
of magnitude greater than those on θ1 and θ2.

• Some particularly singular configurations (like
the one corresponding to t1 = 14 ms in
the last line of table 3 with relative error
amplification of 104 . . . !) may by ”improved”
by adding persistent excitation. However,
this does not change the qualitative facts
cited above. This is because, as mentioned
earlier in this paper, even when the regu-
lated variable are constant, the state x =
(Isα, Isβ ,Φsα,Φsβ) periodically time-varying
and hence, persistent excitation naturally
holds.

The results shown on table 5 validate the qual-
itative facts mentioned above. Indeed, on this
table are shown the predicted p computed from



t1 |S1| := |
∂p

∂θ1
| |S2| := |

∂p

∂θ2
| |S3| := |

∂p

∂θ3
|

5 ms (14 , 3572 , 0.46) (39 , 4587 , 1.3) (0.3 , 56 , 0.03)

8 ms (29 , 5557 , 2.9) (17 , 1822 , 7.7) (0.9 , 86.8 , 0.47)

14 ms (767 , 30563 , 686) (324 , 15025 , 288) (16 , 547 , 16.2)

Table 3. Sensitivity results for v = 0

t1 |S1| := |
∂p

∂θ1
| |S2| := |

∂p

∂θ2
| |S3| := |

∂p

∂θ3
|

5 ms (13.6 , 3442 , 0.35) (37.5 , 4250 , 1.0) (0.28 , 46 , 0.02)

8 ms (32.7 , 5821 , 0.12) (27 , 2540 , 0.32) (0.24 , 40 , 0.03)

14 ms (38.5 , 5262 , 0.02) (18 , 4387 , 0.4) (0.27 , 48 , 0.03)

Table 4. Sensitivity results for v given by (17)

t1 v p(t1, θ(t1)) pLS(t1, 0.995× θ(t1)) pCLS(t1, 0.995× θ(t1))

5 ms 0 (1.00 , 1.00 , 1.000) (0.79 , 28.11, 0.993) (0.93 , 1.30 , 1.014)

8 ms 0 (1.00 , 1.00 , 1.000) (0.81 , 31.48 , 1.038) (1.18 , 1.30 , 1.300)

14 ms 0 (1.00 , 1.00 , 1.000) (0.10 , 37.88 , 0.200) (1.22 , 1.30 , 1.300)

5 ms Eq. (17) (1.00 , 1.00 , 1.000) (0.80 , 26.36 , 0.995) (0.93 , 1.30 , 1.015)

8 ms Eq. (17) (1.00 , 1.00 , 1.000) (0.78 , 33.85 , 0.999) (0.99 , 1.30 , 1.015)
14 ms Eq. (17) (1.00 , 1.00 , 1.000) (0.77 , 36.84 , 1.000) (0.98 , 1.30 , 1.000)

Table 5. Validation of the sensitivity-based predictions

a slightly erroneous θ = 0.995 × θ(t1) according
to (11) in which θopt is replaced by either the
true θ(t1) or the above erroneous value, namely
θ = 0.995 × θ(t1). The resulted p are shown with
the notations pLS on table 5. The last column in
table 5 shows the estimated p if a constrained least
squares solver is used in order to force the scaled
p to meet the following constraints

pCLS ∈ [0.5 , 1.3]× [0.5 , 1.3]× [0.5 , 1.3]

Note the particular sensitivity of p2 and the rel-
ative robustness of p3 (under unconstrained least
squares). Note also the extreme sensitivity of all
the pi’s in the case t1 = 14 ms and v = 0 that
can be predicted from the last line of table 3.
Finally, it may be important to note that the
values (1.000) in the column denoted by p(t1, θ(t1)
on table 5 are effectively computed values using
either constrained or unconstrained least squares.
This proves that p is theoretically identifiable if
the exact value of θ is known, the errors in the
computation of pLS and pCLS in table 5 really
reflects sensitivity problems.

5. CONCLUSION

In this paper, sensitivity analysis is carried for
the problem of simultaneous estimation of state
and parameter for induction machine controlled
in torque and flux. This is done through the def-
inition of sensitivity indicators appearing when
putting the problem under standard separable
least squares form. The qualitative results show
extreme sensitivity of certain parameters to es-
timation error of the state going as far as mul-
tiplying relative errors by three orders of mag-
nitude. This should incite to the caution in the

analysis of works carrying the simultaneous esti-
mation of induction machine’s state and param-
eters. These should explicitly handle this sensi-
tivity problem by studying the performance of
the proposed scheme under different sorts of er-
rors (measurement errors, finite precision integra-
tion schemes, actuator uncertainties). Validations
based on nominal and free-errors simulation are
to be avoided.
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