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Abstract: We discuss the stabilization of a class of nonlinear systems describing the
dynamics of a stirred tank chemical reactor. The stabilization is achieved using linear
dynamic feedback. Several types of controllers are defined for which closed loop global
asymptotic stability of the set point can be proved. We also discuss the case where
the closed loop possesses several equilibrium states and the controller is designed to
ensure global convergence of the set of the equilibria. The approach relies on the
direct method of Lyapunov and uses concepts from dissipativity and passivity theory.
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1. INTRODUCTION

This paper addresses the stabilization of a class
of nonlinear processes describing the mass and
heat dynamics of a stirred tank chemical reactor.
The processes contain two different types of non-
linear components : a nonlinear amplifier and a
product type nonlinearity. There may exist sev-
eral open loop equilibrium states. Various types
of dynamic feedback controllers are considered :
PD control, PID control as well as more complex
linear controllers. Sufficient conditions are derived
for the global asymptotic stabilization of the sys-
tem’s set point. The approach relies on well estab-
lished principles for nonlinear controller design :
It uses classical Lyapunov arguments and some
concepts from dissipativity and passivity theory.
Background information on these methods can be
found e.g. in (Lozano et al., 2000). Although in
principle the controlled system is globally feed-
back linearizable, at least when both feed temper-
ature and feed concentration are used as inputs,
we wish to concentrate on the application of scalar

or multivariable linear control, without trying to
compensate the system’s complex nonlinearities.
This will improve the simplicity and robustness of
the design. Section 2 describes the dynamics of a
stirred tank reactor. First a single feedback loop
with feed temperature as the only input and with
a PD controller is investigated. Section 3 presents
a Lyapunov stability analysis of the closed loop
yielding sufficient conditions for global asymptotic
stability of the set point. More general classes of
controllers including PID control are discussed in
Section 4. An interpretation of the results in the
framework of passivity theory is included. Section
5 considers the design of controllers that allow the
existence of several closed loop equilibrium states.
Conditions are derived that ensure the conver-
gence of all solutions to one of the equilibria. Thus
the occurrence of sustained oscillations is elimi-
nated while the availability of a global Lyapunov
function may be exploited to estimate the set
point’s region of attraction in state space (Genesio
et al., 1985). The paper terminates with some
conclusions and suggestions for further work.
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2. PROCESS DYNAMICS

In reduced form the heat and mass balance equa-
tions of a stirred tank reactor for a single chemical
reaction (Luyben, 1990) can be written as

ẋ1 = r − (1 + s)x1 + m2g(x1, x2) + u1 (1)

ẋ2 = 1 − x2 − m1g(x1, x2) + u2 (2)

where x1
�
= RT

E 104, x2
�
= c

c0
and g(x1, x2)

�
=

x2 exp
(
− 104

x1

)
; r

�
= 104 R

E

(
T0 + UTk

Fρcp

)
, s

�
= U

Fρcp
,

m1
�
= V k0

F , m2
�
= 104 (−∆H)V k0c0R

FρcpE and where time

has been rescaled as τ
�
= t/(V

F ). The state vari-
ables are proportional to reactor temperature T

and reactor concentration c. The inputs u1
�
= 104

R
E ∆T0(t) and u2

�
= 1

c0
∆c0(t) are scaled fluctua-

tions of feed temperature with nominal value T0

(or eventually cooling temperature, with nominal
value Tk) and possibly feed concentration with
nominal value c0. The other model parameters are
the heat capacity per unit of volume cp, the spe-
cific mass ρ, the molar reaction heat −∆H and the
reaction speed per unit of volume k0c exp

(−E
RT

)
.

Corresponding to u1 = u2 = 0 there can be
either one or three equilibrium states (Genesio et
al., 1985). One of these, say (x1s, x2s) is the set
point. Redefining the state variables as deviations
from the set values transforms (1), (2) into

ẋ1 =−(1 + s)x1

+m2 [g(x1s + x1, x2s) − g(x1s, x2s)]

+m2g(x1s + x1, x2) + u1 (3)

ẋ2 =−x2 − m1 [g(x1s + x1, x2s) − g(x1s, x2s)]

−m1g(x1s + x1, x2) + u2 (4)

(3), (4) imply that

m1ẋ1 + m2ẋ2 =−m1(1 + s)x1

−m2x2 + u0 (5)

where u0
�
= m1u1 + m2u2. Choose u0 such that

m2x2 = αx1 + βẋ1 (6)

where α and β are design parameters. Then elim-
inating x2 from (5), (6) results in the control law

u0 = [m1(1 + s) + α] x1

+(m1 + β)ẋ1 + m2ẋ2 (7)

Now the state equations (6), (4) take the form

Mẋ = Ax − b [f1(c′x) + f2(c′x)c′ẋ − u2] (8)

where M =
[

β 0
0 1

]
, A =

[−α m2

0 −1

]
, b =[

0
1

]
, c =

[
1
0

]
, f2(y) = m1

m2
β exp

(
− 104

x1s+y

)
,

f1(y) = m1x2s

[
exp

(
− 104

x1s+y

)
− exp

(
− 104

x1s

)]
+

m1
m2

αy exp
(
− 104

x1s+y

)
.

First we consider the case of a a PD controlled
process with u1 = u0/m1 and u0 defined by (7) as
the input, while

u2(t) ≡ 0 (9)

Generally speaking, (1), (2) is a special case of the
class of nonlinear systems

ẋ = Ax + k − bf(g′x)c′x + Du ; x ∈ Rn (10)

which, besides chemical reactor processes, have
been used to model various other nonlinear tech-
nical systems. Some examples can be found in
(Chiang et al., 1988).

Below we analyze the global asymptotic stability
of the PD-controlled process (8), (9).

3. PD CONTROL

For simplicity rewrite (8), (9) as

ẋ = A0x − b0f0(x, ẋ) (11)

with A0
�
= M−1A, b0

�
= M−1b, f0(x, ẋ)

�
= f1(c′x)

+f2(c′x)c′ẋ and where we assume that M is
nonsingular. Also assume that in the transfer
function

H(s) = c′(Ms − A)−1b (12)

of the system’s linear part there are no pole-zero
cancellations, or equivalently that (A0, b0, c) is a
controllable and observable triple. Furthermore
let H(s) be asymptotically stable. Let

V (x)
�
= x′Px + α0

c′x∫
0

f1(θ)dθ

+

c′x∫
0

f2(θ)θdθ (13)

be a candidate Lyapunov function for the system
(11). Along the solutions of (11) :

V̇ (x) = ẋ′Px + x′P ẋ + α0f1(c′x)c′ẋ

+f2(c′x)c′xc′ẋ



= x′[PA0 + A′
0P ]x − x′[2Pb0 − A′

0cα0].

f0(x, ẋ) − α0c
′b0f

2
0 (x, ẋ)

−α0f2(c′x)(c′ẋ)2 + f2(c′x)c′xc′ẋ

Writing this in the form

V̇ (x) =−[q′x + tf0(x, ẋ)]2 − c′xf1(c′x)

−α0f2(c′x)(c′ẋ)2 (14)

and expanding the first term in the right hand
side produces the equations

PA0 + A′
0P = −qq′ (15)

2Pb0 − 2qt = A′
0cα0 + c (16)

t2 = α0c
′b0 (17)

Under the assumptions above and by an appli-
cation of the Kalman-Yacubovich-Popov (KYP)
lemma (Lozano et al., 2000) the system (15), (16),
(17) has a real solution P = P ′ > 0 (positive
definite), q, t if and only if

α0c
′b0 + Re (c′ + α0c

′A0) (jωI − A0)
−1

b0 ≥ 0 ;

∀ω ∈ R (18)

Using the identity

sc′(sI − A0)−1b0 ≡ c′b0 + c′A0(sI − A0)−1b0

(18) can be transformed to

Re(1 + α0jω)c′(jωI − A0)−1b0 ≥ 0 ;

∀ω ∈ R (19)

Choose α0 ≥ 0. Then V (x) is positive definite and
radially unbounded if

yf1(y) > 0 ; ∀y ∈ R, y �= 0 (20)

f2(y) > 0 ; ∀y ∈ R (21)

By (14), V̇ (x) ≤ 0 for all x ∈ Rn. Furthermore
because of the observability of (A0, c) the largest
invariant subset of Rn where V̇ (x) ≡ 0 consists of
the set point x = 0. Summarizing the above the
set point is globally asymptotically stable if (20),
(21) hold and if for some α0 ≥ 0 :

(1 + α0s)H(s) is positive real (22)

For the PD controlled stirred tank reactor the
conditions (20), (21) are fulfilled. From (8), (12)
we obtain

(1 + α0s)H(s) = m2
1 + α0s

(βs + α)(s + 1)
(23)

which satisfies (22) if α > 0, β > 0 and α0

is selected such that α0 ≥ β/(α + β). Figure 1

−

+

+

H(s)

f1(.)

s

f2(.)

y = c′x

ẏ

f2(y)

ẏf2(y)

f1(y)

Fig. 1. Block diagram of the system (8), (9)

displays a block diagram of the system (8), (9),
which is equivalent to the diagram of Figure 2.
The obtained stability conditions express that in
the latter diagram the component in the forward
path is passive while the feedback path is a paral-
lel connection of two passive components. Indeed
for every input applied to these components at
t = 0,

+∞∫
0

f1(z1)(z1 + α0ż1)dt ≥ 0

+∞∫
0

f2(z2)ż2(z2 + α0ż2)dt ≥ 0

Invoking the invariance theory for autonomous

−

+
+

(1 + α0s)H(s)

f1(.)
z1

1
1+α0s

s

f2(.)

z2
1

1+α0s

Fig. 2. Transformation of the diagram of Fig. 1

systems we have shown that these passivity prop-
erties are sufficient for the set point’s global
asymptotic stability.



4. HIGHER ORDER CONTROLLERS

Here we design a controller for the system (8) with
input u2 ∈ R, which we rewrite as

ẋ = A0x − b0f0(x, ẋ) + bou2 (24)

Along the solutions of (24) and assuming (15),
(16), (17) are satisfied

V̇ (x,w) =−[q′x + tf0(x, ẋ)]2 − c′xf1(c′x)

−α0f2(c′x)(c′ẋ)2 + u2w (25)

where

w
�
= 2x′Pb0 + α0c

′b0f0(x, ẋ) (26)

Hence under the conditions (20), (21), (22), the
system (24) is dissipative with storage function
V (x) and supply rate u2w. If

c′b0 = 0 (27)

then (26) simplifies to

w = 2x′Pb0 = c′x + α0c
′A0x

= c′x + α0c
′ẋ

(27) means that in the expression of H(s)
�
= q(s)

/p(s),

degree q(s) ≤ n − 2 (28)

Indeed lims→∞ sH(s) = c′b0 = 0 if and only if
(28) holds. (28) ensures that the system (8) will
not degenerate (decrease of dynamical order) in
certain points of its state space. Assume (27) holds
and let

u2(s) = −G(s)w(s) (29)

be a feedback law from w to u2 resulting in the
block diagram of Figure 3. Let

ż = Âz + b̂w ; z ∈ Rn0 (30)

−u2 = ĉ′z

be a controllable and observable state representa-
tion of (29) and let Â be Hurwitz. Let

W (z)
�
= z′Qz (31)

Then

Ẇ (z, w) = ż′Qz + z′Qż

=−(q̂′z)2 − u2w (32)

if

− −

+
+

+u2
H(s)

y = c′x

f1(y)
f1(.)

ẏ
s

f2(y)
f2(.)

G(s)
w

1 + α0s

Fig. 3. Block diagram of the system (24), (29)

QÂ + Â′Q = −q̂q̂′ (33)

2Qb̂ = ĉ (34)

(33), (34) has a real solution Q = Q′ > 0, q̂ if and
only if

G(s) = ĉ′(sI − Â)−1b̂ is positive real (35)

Define

Vc(xc)
�
= V (x) + W (z) (36)

Under the assumptions above Vc(xc) is positive

definite and radially unbounded in xc
�
=

[
x
z

]

while

V̇c(xc) =−[q′x + tf0(x, ẋ)]2 − c′xf1(c′x)

−α0f2(c′x)(c′ẋ)2 − (q̂′z)2

≤ 0 ; ∀xc ∈ Rn+n0

Furthermore since (A0, c) is observable and by the
KYP-lemma (Â, q̂) is also observable, the largest
invariant subset of Rn+n0 where V̇c(xc) ≡ 0 con-
sists of the closed loop set point xc = 0. The block
diagram of Figure 3 is equivalent to the diagram
of Figure 4. The conditions for global asymptotic
stability (20), (21), (22), (35) express that in the
loop of Figure 4 the forward path is passive and
the feedback path is a parallel connection of three
passive components. The special case

G(s) =
β0

s
; β0 > 0 (37)

yields

u2(s) = −β0

(
1
s

+ α0

)
y(s) (38)
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Fig. 4. Transformation of the diagram of Fig. 3

where y
�
= c′x. For the stirred tank reactor with

feed temperature and feed concentration as in-
puts, H(s) = m2/(βs + α)(s + 1) such that (28)
holds and (7), (29) represent a globally asymptot-
ically stabilizing PID controller.

5. SYSTEMS WITH SEVERAL CLOSED
LOOP EQUILIBRIUM POINTS

Below we consider controllers that allow the ex-
istence of several closed loop equilibrium states.
Our approach is to find conditions that ensure the
convergence of every solution to one of the equilib-
ria, thus eliminating the occurrence of sustained
oscillations. In general the conditions for global
convergence to the set of the equilibria are less
restrictive than those for the global asymptotic
stability of a single equilibrium point. Specifically
the obtained control laws are less likely to gen-
erate inputs beyond the system’s physical satu-
ration levels. Hence they constitute a basis for
controller design in such cases where a bounded
(but sufficiently large) region of attraction in state
space for the set point is acceptable.

Our approach is to find a global Lyapunov func-
tion for the system whose derivative does not
vanish along any nonconstant solution. Standard
invariance theory then implies that every solution
that remains bounded for increasing time will
converge to an equilibrium point. This property
is called the system’s nonoscillating behaviour.
For nonoscillating systems, if all solutions remain
bounded for t ≥ 0 the set of the equilibria is
globally convergent. The boundedness of solutions
for t ≥ 0 can often easily be verified, for example
using a suitable Lyapunov function. Furthermore
the availability of a global Lyapunov function al-

lows to evaluate the set point’s region of attraction
in state space using well established techniques
(Genesio et al., 1985). Below we present a few
criteria for nonoscillating behaviour.

Returning to the reactor equations (1), (2) choose

u0 = [m1(1 + s) + α]x1 + (m1 + β)ẋ1

+m2ẋ2 + γ − m1r − m2 (39)

such that

m2x2 = αx1 + βẋ1 + γ (40)

The equations (40), (2) take the form

Mẋ = Ax + k − b[f1(c′x) + f2(c′x)c′ẋ]

+bu2 (41)

where M , A, b and c are as before, k =
[−γ

1

]

and

f1(y) =
m1

m2
(αy + γ) exp

(
−104

y

)

f2(y) =
m1

m2
β exp

(
−104

y

)

Again assume that the linear part of (41) is con-
trollable, observable and asymptotically stable.
First consider the case of a PD controller :

u2(t) ≡ 0 (42)

while u1 = u0/m1 is given by (39). For a system
of the form (41), (42) let

V (x)
�
= x′Px + α0

c′x∫
0

f1(θ)dθ + p′x (43)

Then

V̇ (x) = ẋ′Px + x′P ẋ + α0f1(c′x)c′ẋ + p′ẋ

Substituting x by x = A−1[Mẋ − k + bf1(c′x) +
bf2(c′x)c′ẋ] and choosing

p
�
= 2PA−1k (44)

2PA−1b + α0c = 0 (45)

PA−1M + M ′A−1′P = −qq′ (46)

yields

V̇ (x) = ẋ′[PA−1M + M ′A−1′P ]ẋ

+2ẋ′PA−1bf2(c′x)c′ẋ

=−(q′ẋ)2 − α0f2(c′x)(c′ẋ)2 (47)



The system (45), (46) has a real solution P = P ′,
q if ∀ω ∈ R :

−α0Re c′(jωI − A−1M)−1A−1b ≥ 0

which can be rewritten as

α0

ω
Im c′(jωM − A)−1b =

α0

ω
Im H(jω) ≤ 0 ; ∀ω ∈ R (48)

Choose α0 > 0 and assume f2(.) satisfies (21).
Then using (47) and the observability of (A0, c)
it is easy to show that nonoscillating closed loop
behaviour is ensured. In the case of the stirred
tank reactor the imposed conditions, in particular
(48) are satisfied for α > 0 and β > 0.

The extension to the case u2(t) �≡ 0 is straightfor-
ward. We now have

V̇ (x) =−(q′ẋ)2 − α0f2(c′x)(c′ẋ)2 + α0u2ẇ

with w
�
= c′x. Again let u2(s) = −G(s)w(s) with

state representation (30). However write Ẇ (z, w)
as

Ẇ (z, w) = ż′QÂ−1(ż − b̂w) + (ż − b̂w)′Â−1′Qż

=−(q̂′ż)2 + α1u̇2w

where we let

QÂ−1 + Â−1′Q = −q̂q̂′ (49)

2QÂ−1b̂ = −α1ĉ (50)

(49), (50) requires that ∀ω ∈ R :

−Re α1ĉ
′(jωI − Â−1)−1Â−1b̂ ≥ 0

or equivalently

α1

ω
Im ĉ′(jωI − Â)−1b̂ =

α1

ω
Im G(jω) ≤ 0 ; ∀ω ∈ R (51)

Defining

Vc(xc) &pdefV (x) − α0u2w +
α0

α1
W (z, w)

yields

V̇c(xc) =−(q′ẋ)2 − α0f2(c′x)(c′ẋ)2 − α0

α1
(q̂′ż)2

which for α1 > 0 ensures nonoscillating closed
loop behaviour. So the conditions on the con-
trolled system and on the controller are (48) and
(51) with α0 > 0 and α1 > 0. The chemical
reactor model satisfies (48).

6. DISCUSSION AND CONCLUSIONS

We have discussed the stabilization of a class of
nonlinear stirred tank reactor models possessing
two different types of nonlinearities. Stabilization
is achieved using linear dynamic output feedback.
The system’s global asymptotic stabilization by
means of PD, PID and more complex controllers
has been studied. However the practical appli-
cability of the proposed techniques must be fur-
ther analysed. E.g. bounds on the admissible val-
ues of state and control variables must be taken
into account. The local dynamics around the set
point and the system’s time domain response must
be examined. Specific algorithms for the deter-
mination of control parameters must be devel-
oped, simulation results will be needed and the
method must be compared with existing design
techniques.

We have also considered the case where the control
law allows the existence of several closed loop
equilibrium states. We have presented sufficient
conditions for the controller structure to ensure
nonoscillating closed loop dynamics. When using
this approach the design must include an analysis
of the influence of the control parameters on the
set point’s region of attraction in state space. The
availability of a global Lyapunov function will
facilitate the solution of this problem. Also we
must investigate what can be gained in terms of
the characteristics of the control strategies and the
system’s response when discarding global asymp-
totic stability as a design requirement. These are
subjects for further research whose outcome will
be reported later.
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