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Abstract: Mass balance model for steady-state linear data reconciliation is insufficient, 
especially when short-term scheduling is performed on hybrid systems. 
Scheduling-equations are established and used as addition to the model. A new 
formulation of data reconciliation is thus proposed as steady-state bilinear data 
reconciliation. In this way, the redundancy degree is increased and the solvability of data 
reconciliation is improved. Simulation results demonstrate the efficiency and consistency 
of the proposed approach. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Since measurements of process variables, such as 
flow rates, concentrations, temperatures and so on, 
are subject to errors (both random errors and gross 
errors), it cannot be expected that any set of 
measurements will obey the laws of conservation. 
Data reconciliation is a procedure of optimally 
adjusting measured data so that the adjusted values 
obey the conservation laws and other constraints 
(Crow, 1996). 
 
Although no plant operates at a true time-invariant 
steady state, in practice the steady state is defined to  
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mean constancy of the mean values of measurements 
over a given period of time, which is called 
reconciliation period. For refinery, steady-state linear 
data reconciliation is usually performed on flow rates 
based on mass balance. These mass balance 
equations are the model of the measurements 
network. Data reconciliation’s results rely greatly on 
the redundancy degree of the model (Kretsovalis, 
1987). If the model’s redundancy degree is very low, 
it will make some unmeasured variables 
unobservable and some gross errors uncorrected. 
 
Refineries have not only continuous flows, but also 
discrete scheduling events in order to meet 
production and sales requirements. Scheduling, 
especially short-term changes of plant outlets and oil 
movements, make it difficult to build mass balance 
equations. They are typical hybrid systems where 
conventional steady-state linear data reconciliation is 
very difficult to be implemented. There are two 
conventional ways to deal with this problem. One is 
to modify mass balance equations when the 
short-term scheduling events happen. This is not a 
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good way, because the reconciliation period will be 
modified, which will bring troubles to yield 
accounting and other applications. The other way is 
to include all of the short-term scheduling schemes in 
mass balance equations. For example, the first bypass 
of ordinary pressure distillation column has three 
branch ways for solvent, raw material of catalystic 
reformer and kerosene, respectively. The first bypass 
product can be either of them according to short-term 
scheduling schemes. A balance equation can be 
established to model these scheduling schemes. Since 
there is only one sensor on the bypass, and no sensors 
on branch ways, flow rates of solvent, raw material 
of catalystic reformer and kerosene are all 
unmeasured. This equation has three unmeasured 
variables. Thus the model’s redundancy degree is 
reduced and will deteriorate performance of the data 
reconciliation. As a result, this method is also not 
very practical.  
 
Actually, a scheduling scheme consists of some 
useful information such as the scheduling schemes 
execution time and what the branch way’s product is 
at that time. In this paper, this information is used to 
build scheduling-equations. Consequently the 
redundancy degree of the model, including mass 
balance equations and scheduling-equations, will be 
improved. Then a new formulation of data 
reconciliation is proposed as steady-state bilinear 
data reconciliation. Simulation results demonstrate 
the efficiency and consistency of the proposed 
approach. 
 
This paper is organized as follows. Steady-state 
linear data reconciliation is briefly discussed in 
Section 2. Section 3 gives out the proposed bilinear 
data reconciliation dealing with scheduling. 
Simulation results are presented in Section 4 and 
Section 5 concludes the whole paper. 
 
 

2. STEADY-STATE LINEAR DATA 
RECONCILIATION 

 
The steady-state linear model of a process is usually 
defined as follows 
 

Ax + Bu = 0              (1) 
 

Where An×p is matrix corresponding to measured 
variables, Bn × q is matrix corresponding to 
unmeasured variables, x is p-dimensional vector of 
measured variables, u is q-dimensional vector of 
unmeasured variables. 
 
The steady-state linear data reconciliation problem 
can be written as follows 
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Where x is p-dimensional vector of measurements, 
 and u are the reconciled and estimated values 

vectors, S
x̂

x,m is the covariance matrix of x. 
 
Assume gross errors have been detected and treated 
as unmeasured variables, and random measurement 
errors are independent and normally distributed with 
zero mean and known covariance matrix Sx,m. Then 
the steady-state linear data reconciliation problem (2) 
can be easily solved by using least squares algorithm. 
 
The reconciliation results depend greatly on the 
model’s redundancy degree. If the redundancy degree 
is too low, it will make some unmeasured variables 
unobservable and some gross errors uncorrected. 
Since the linear model includes all of the short-term 
scheduling schemes, there are too many unmeasured 
variables and its redundancy degree is very low. Thus, 
the model Equation (1) should be revised to increase 
its redundancy degree to guarantee the reconciliation 
performance. 
 
 

3. STEADY-STATE BILINEAR DATA 
RECONCILIATION DEALING WITH 

SCHEDULING 
 
Assume there are s scheduling schemes during the jth 
reconciliation period, and all of them are only 
performed on node k, as shown in Fig 1. x0 is 
measured, u1~us are all unmeasured and the 
reconciliation period is T. 
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Fig 1 Sketch map of scheduling 

 
Suppose  
jth reconciliation period beginning time t0 = (j-1)T,  
jth reconciliation period ending time ts = jT, 
from t0 to t1:  u1 = x0, u2 = u3 = … = us = 0; 
from t1 to t2:  u2 = x0, u1 = u3 = … = us = 0; 
… 
from ts-1 to ts:  us = x0, u1 = u2 = … = us-1 = 0; 
if ti-1 = ti, the ith scheduling scheme has not 
happened. 
 
Mass balance equation of node k is 
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Obviously, this equation includes all s scheduling 
schemes and there are s unmeasured variables. In fact, 
when one scheduling scheme is performed, only one 



branch way has mass flow, and the other s-1 branch 
ways have no flows. That means actually only one 
variable is unmeasured variable and the others are 
zero. So when using Equation (3) as a equation of the 
model, the redundancy degree is very low. 
 
Let 
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Equation (5) and (6) are defined as 
scheduling-equations of node k. Obviously the 
scheduling-equations have close relationship with 
Equation (3). Although the execution time of 
scheduling schemes is definitely known, as other 
measurements, the actually execution time is polluted 
by errors (both random and gross errors). Suppose in 
the absent of gross errors, ∆ti (i=1,2, L,s) are 
measured variables whose covariance matrix is ∑st. 
Obviously, Equation (6) is independent and consist of 
measured variables. A system has a degree of 
redundancy k, when, at least, k linearly independent 
balance equations can be written using measured 
variables only (Bagajewicz and Sanchez, 1999). 
According to that definition, the redundancy degree 
will at least increase one if the scheduling-equations 
are used in the model instead of Equation (3).  
 
Define the data reconciliation problem of jth period 
is 
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s.t.      A1 x̂ + B1u = 0               (8) 
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Where A1, B1 are obtained by deleting the row vector 
that correspond to node k in the matrixes A and B (to 
ensure the constraints are independent),  is the 
reconciled values of . 

t∆̂
t∆

 
Obviously that is a steady-state bilinear data 
reconciliation problem. SQP (Successive Quadratic 
Programming) algorithm is used to solve this 
problem in simulation. 
 

In this way, the redundancy degree of the model is 
increased and the solvability of the data 
reconciliation problem is improved. Although this 
paper discusses the case where there are scheduling 
schemes only on one node, the method is also 
applicable to cases where scheduling events happen 
on more than one node. 
 

 
4. SIMULATION 

 
The simulation network consists of 6 nodes and 13 
variables as shown in Fig 2. Among those variables, 
x1~x9 are measured and u1~u3 are unmeasured. For w, 
two cases, unmeasured or measured, are discussed. 
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Fig 2 Simulation network 
 
 
4.1 Redundancy degree 
 
Suppose the reconciliation period T = 24 hours, and 
scheduling is only performed on node N2: 
t = 0~8:    ∆t1=8,  u1 = x2, u2 = u3 = 0; 
t = 8~16:   ∆t2=8,  u2 = x2, u1 = u3 = 0; 
t = 16~24:  ∆t3=8,  u3 = x2, u1 = u2 = 0.  
 
The mass balance equations are 

 
x1 = x2 + x3 + x4             (11) 

 
x2 = u1 + u2 + u3            (12) 

 
u1 = x5 + w              (13) 

 
u2 = x6                (14) 

 
x3 = x7 + x8             (15) 

 
x4 = x9                (16) 

 
Whether w is measured or not, the redundancy 
degree is 3 because only Equations (11), (15) and (16) 
consist of measured variables. 
 
Using the method proposed in this paper, the 
scheduling-equations of node N2 are 
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∆t1 + ∆t2 + ∆t3 = T           (20) 

 
While including scheduling-equations (17)~(20) in 
the model, to guarantee the independence, Equation 
(12) must be deleted from the model. Thus, the 
model of the steady-state bilinear data reconciliation 
problem dealing with scheduling can be stated as 
follows 
 

x1 = x2 + x3 + x4             (21) 
 

u1 = x5 + w               (22) 
 

u2 = x6                 (23) 
 

x3 = x7 + x8              (24) 
 

x4 = x9                (25) 
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∆t1 + ∆t2 + ∆t3 = T           (29) 

 
When w is unmeasured, combining Equation (23) 
and (27) can get a new equation that consists of 
measured variables. Obviously Equation (29) 
consists of measured variables. Then, there are 5 
independent equations consist of measured variables. 
Thus, the redundancy degree is 5. By using the same 
analysis, it is easy to know when w is measured, the 
redundancy degree will be 6. So, the model’s 
redundancy degree is increased when including 
scheduling-equations in the model. 
 
 
4.2 Simulation results 
 
Assume there are no gross errors, and the random 
errors of all the measurements (both flow rates and 
scheduling execution time) are independent and 
normally distributed with zero mean and known 
covariance matrix with their diagonal elements 
shown in Table 1 and Table 2. The measured values 
and true values are also shown in Table 1 and Table 2. 
One thousand samples are generated for Monte Carlo 
simulation. 

 
Case I: When w is unmeasured, according to 
Vaclavek’s criterion (Vaclavek, 1969), the 
unmeasured variables u1, u3 and w are unobservable, 
because they form a circle through node N2, N3 and 
the environment. Consequently, the conventional 
linear data reconciliation based on the mass balance 
model can not be performed. However, the proposed 
bilinear data reconciliation based on the model 
including both mass balance equations and 
scheduling-equations can be performed properly. The 
reconciliation result of one sample is shown in Table 
1 and Table 2. 
 
Case II: When w is measured, both of the 
conventional approach and the proposed approach 
can be performed. Define the performance index of 
data reconciliation results (IRR) as follows 
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Where Ns is the number of samples,  is the 
reconciled value of variable i of the kth sample, x

ki,x̂

ti is 
the true value of variable i. 
 
Comparison result of one sample is shown in Table 3 
and the IRR comparison results are shown in Table 4.  
 
Obviously, the proposed approach is much more 
effective than the conventional approach and its 
consistency is well shown. 
 

 
5. CONCLUSIONS 

 
Since mass balance model for conventional 
steady-state linear data reconciliation is insufficient 
sometimes, especially when short-term scheduling 
events are performed in hybrid systems, 
scheduling-equations are established and used as 
addition to the model and a new formulation of data 
reconciliation is proposed as steady-state bilinear 
data reconciliation. In this way, the redundancy 
degree is increased and the solvability of data 
reconciliation is improved. Comparisons between the 
proposed approach and the conventional approach 
are made in the simulation. Simulation results 
demonstrate the efficiency and consistency of the 
proposed approach. However, the assumption about 
the statistic feature of scheduling execution time 
variables is not so proper. This problem will be the 
focus of our future work. 
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Table 1  Simulation results of case I (flow rates) 

 
Variables xt (∑)i,i x x̂  

x1   1000 100 998.83 1001.00
x2 300 9 299.55  299.20
x3 300 9 298.08  301.95
x4 400 16 402.43  399.87
x5  50 0.25  49.43   49.43
x6 100 1  99.84   99.89
x7 100 1 101.04  100.59
x8 200 4 203.18  201.37
x9 400 14 397.66  399.87
u1 100 no unmeasured   99.93
u2 100 no unmeasured   99.89
u3 100 no unmeasured   99.38
w  50 no unmeasured   50.50

 
 

Table 2  Simulation results of case I (scheduling executive time) 
 

Variables ∆tt (∑st)i,i ∆t t∆̂  

∆t1 8 0.09 7.71 8.02 
∆t2 8 0.09 7.76 8.01 
∆t3 8 0.09 7.66 7.97 

 
 

Table 3  Simulation results of case II 
 

Variables xt (∑)i,i x x̂   
of proposed 

approach 

x̂  
of conventional 

approach 
x1 1000 100 999.74 998.43 996.17 
x2  300 9 295.41 298.25 295.73 
x3  300 9 302.02 300.00 300.07 
x4  400 16 399.61 400.19 400.37 
x5   50 0.25  50.21  50.11  50.21 
x6  100 1  99.96  99.47 99.96 
x7  100 1 100.09 100.33 100.35 
x8  200 4 198.71 199.67 199.73 
x9  400 14 400.55 400.19 400.37 
u1  100 no unmeasured 100.07 100.28 
u2  100 no unmeasured  99.47  99.96 
u3  100 no unmeasured  98.70  95.50 
w   50 0.25  50.07  49.96  50.07 

 
 

Table 4  IRR comparison results of case II 
 

Ns IRR of proposed approach IRR of conventional 
approach 

100 0.0014594 0.0019352 
1000 0.0014506 0.0018688 

 


