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1. INTRODUCTION

Recently a series of w orksha vebeen focused on
the robust adaptive control of a class of nonlinear
systems whose uncertainties include nonlinearly
appearing parametric uncertainty, uncertain non-
linearities as well as unmeasured input-to-state
stable dynamics (Jiang and Hill, 1999)(Plycarpou
and Ioannou, 1995)(Yao and T omizuka, 1997).
A robust adaptive nonlinear con troldesign pro-
cedure was presented in (Plycarpou and Ioan-
nou, 1995) for a class of nonlinear systems with
both parametric uncertainty and unknown non-
linearities under the assumption that unknown
functions satisfy a so-called triangular bounds con-
dition. In (Jiang and Hill, 1999), the authors
proposed a robust adaptive con trol scheme for
perturbed strict feedback nonlinear systems sub-
ject to nonlinear parametric uncertainty, uncer-
tain nonlinearity, and unmodeled dynamics. For
a similar class of nonlinear system, (Yao and
T omizuka, 1997) also presented an adaptive ro-
bust control method by combining thebac kstep-
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ping adaptive control with conventional determin-
istic robust control.

In order to cope with the completely unknown
nonlinear system functions, as an alternative,
approximator-based adaptive control approaches
have also been extensively studied in the past
decade using Lyapunov stabilit y theory (Geet al.,
2001)(Polycarpou, 1996)(Yesildirek and Lewis,
1995)(Wang, 1994). In (Y esildirek and Lewis,
1995)(Ge et al., 1999), stable adaptive NN con-
trollers w ere proposed for nonlinear systems in
a Brunovsky form. The same system w as stud-
ied in (Wang, 1994)(Spooner and P assino, 1996)
by using fuzzy systems as function approximator
and di�erent adaptive fuzzy controllers have been
deriv ed. Using the idea of adaptive backstepping,
the dev eloped approximator-based adaptive con-
trol approaches were recently extended to non-
linear systems without satisfying matching con-
dition (Ge et al., 2001)(Polycarpou, 1996). In
(P olycarpou, 1996), a stable adaptive neural con-
trol method was presented for a second-order non-
linear system, where the unknown system func-
tion was parameterized by RBF neural networks,
and unknown neural reconstruction error bound
was also adaptively tuned on-line. The existing
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robust adaptive algorithms for triangular systems
are developed with the virtual control coeÆcients
equal to one (Jiang and Hill, 1999)(Plycarpou
and Ioannou, 1995). The problem of adaptive
control of nonlinear systems with unknown vir-
tual control coeÆcients have recently received a
lot of attention from many researchers (Krstic
et al., 1995)(Ye and Jiang, 1998)(Kaloust and
Qu, 1995)(Ge et al., 2002). In (Kaloust and
Qu, 1995), a robust control design was developed
for a class of uncertain nonlinear systems satisfy-
ing the so-called generalized matching conditions
without a priori knowledge of control directions.
In (Ye and Jiang, 1998), by using Nussbaum gain
(Nussbaum, 1983), adaptive control algorithms
were presented for parametric-strict-feedback sys-
tems with unknown virtual control coeÆcients.
However, the discussed systems in the above men-
tioned works are mostly focused on the so-called
strict feedback nonlinear systems under the as-
sumption that the system uncertainties have been
linearly parameterized.

In this paper, we present a robust adaptive con-
trol design procedure for a class of semi-strict
feedback nonlinear systems with both unknown
virtual control coeÆcients and unknown nonlin-
earities. The unknown nonlinearities comprise two
types of nonlinear functions: one naturally sat-
is�es the \triangularity condition" and will be
approximated by linearly parameterized approxi-
mators; while the other is assumed to be partially
known and consists of parametric uncertainties
and known \bounding functions" which also sat-
isfy the \triangularity condition". With the uti-
lization of adaptive backstepping and tuning func-
tions which are for the reduction of overparame-
terization, the proposed design method expands
the class of nonlinear systems for which robust
adaptive control approaches have been studied. It
has been proven that the proposed robust adap-
tive scheme can guarantee the uniform ultimate
boundedness of the closed-loop system signals.

2. PRELIMINARIES

Consider the control problem of a single-input-
single-output (SISO) nonlinear uncertain system
transformable into

_xi = gixi+1 + fi(x1; � � � ; xi) + �i(t; x)
_xn = gn�(x)u+ fn(x) + �n(t; x)
y = x1

(1)

where i = 1; � � � ; n � 1, x = [x1; � � � ; xn]T 2
R
n is the state vector, u 2 R is the control,

f1; � � � ; fn are unknown smooth nonlinear func-
tions, �(x) : Rn ! R is known smooth function
and �(x) 6= 0;8x 2 R

n, gi; i = 1; � � � ; n are
unknown constants, and they are referred to as

virtual control coeÆcients, in particular, gn is
referred to as the high-frequency gain, and �i's
are unknown Lipschitz continuous functions. Let
�xi = [x1; � � � ; xi]T . The control objective is to con-
struct a robust adaptive nonlinear control law so
that the output y of the above system is driven to
a small neighborhood of the origin, while keeping
internal Lagrange stability.

The system described by (1) is in the so-called
semi-strict feedback form (Yao and Tomizuka,
1997), which has two types of unknown nonlin-
ear functions: one naturally satis�es the \trian-
gularity condition" and can be directly approxi-
mated by linearly parameterized approximators;
while the other, arises owing to �i(t; x), is as-
sumed to be partially known and consists of para-
metric uncertainties and known \bounding func-
tions" which also satisfy the \triangularity condi-
tion". The unknown nonlinear functions �i(t; x)
could be due to many factors, such as mea-
surement noise, modeling errors, external distur-
bances, modeling simpli�cations or changes due to
time variations (Plycarpou and Ioannou, 1995).

Assumption 1. For 1 � i � n, there exists un-
known positive constant p�i such that 8(t; x) 2
R+ � R

n, j�i(t; x)j � p
�

i �i(x1; � � � ; xi), where �i
is a known nonnegative smooth function.

Assumption 2. The signs of gi; i = 1; � � � ; n are
known.

A linearly parameterized approximator shall be
used to approximate the unknown nonlinearities
fi(�). Several function approximators can be ap-
plied for this purpose, e.g., radial basis function
(RBF) neural networks (Ge et al., 2001)(Sanner
and Slotine, 1992), high-order neural networks
and so on, which can be described as �T (z) with
input vector z 2 R

n, weight vector � 2 R
l, node

number l, and basis function vector  (z) 2 R
l.

Universal approximation results indicate that, if
l is chosen suÆciently large, then �T (z) can ap-
proximate any continuous function to any desired
accuracy over a compact set. In this paper, we use
the following RBF NN to approximate a smooth
function. For the unknown nonlinear functions
fi(�xi); i = 1; � � � ; n in (1), we have the following
approximation over the compact sets 
i

fi(�xi) = �
�T
i  i(�xi) + !i(�xi); 8�xi 2 
i � R

i (2)

where  (�xi) is the basis function vector, !i(�xi)
is the approximation error and ��i is an unknown
constant parameter vector.

Remark 1. The optimal weight vector ��i in (2)
is an \arti�cial" quantity required only for an-
alytical purposes. Typically, �� is chosen as the
value of � that minimizes !i(�xi) for all �xi 2 
i,



where 
i � R
i is a compact set, i.e., ��i :=

argmin�i2Rnfsup�xi2
i
jfi(�xi)� �

T
i  (�xi)jg.

Assumption 3. On a compact region 
i 2 R
i,

j!i(�xi)j � Æ
�

i ;8�xi 2 
i, i = 1; � � � ; n, where Æ�i � 0
is an unknown bound.

3. ROBUST ADAPTIVE CONTROL

3.1 Control Design with gi = 1

Before we introduce the robust adaptive control
algorithm for system with unknown gi, let us �rst
give the robust adaptive control design for the case
gi = 1. Using (2), equation (1) can be expressed
as

_xi = xi+1 + �
�T
i  i(�xi) + !i(�xi) + �i(t; x)

_xn = �(x)u+ �
�T
n  n(x) + !n(x) + �n(t; x)

y = x1

(3)

The system described by (3) has three types of
uncertainty: parametric uncertainty, which arises
due to the unknown ��i , the bounding uncertainty
that arises due to the unknown bounds on �i and
!i, and unknown virtual control coeÆcient gn.
The unknown parameters ��i , p

�

i , Æ
�

i and gn will be
estimated on-line. In order to avoid the possible
singularity problem for gn, we estimate

1
gn

instead
of gn. Our design consists of n steps. At each
intermediate step i, we design stabilizing function
�i using an appropriate Lyapunov function Vi,

and give the parameters update law
_̂
bi for b

�

i which
is the grouped unknown bound for p�i and Æ

�

i .

The tuning functions �j;i for �̂j are also proposed,

where �̂j represents the estimate of unknown
parameter ��j .

Step 1: To start, consider the subsystem of (3):

_x1 = x2 + �
�T
1  1(x1) + !1(x1) + �1(t; x) (4)

where x2 is taken for a virtual control input. To
design a stabilizing adaptive control law for sys-
tem (4), consider a Lyapunov function candidate
W1 = 1

2
x
2
1. In light of Assumptions 1 and 3, the

time derivative of W1 along the solutions of (4)
satis�es

_W1 � x1(x2 + �
�T
1  1(x1)) + b

�

1jx1j�̂1(x1) (5)

where b�1 = maxfÆ�1 ; p�1g, �̂1(x1) = 1 + �1(x1).
Consider the Lyapunov function candidate V1 =

W1 +
1
2
(�̂1 � �

�

1)
T��11 (�̂1 � �

�

1) +
1
2�1

(b̂1 � b
�

1)
2,

where �1 = �T1 > 0, �1 > 0, and �̂1 and b̂1 are the
parameters estimates to be determined later. The
time derivative of V1 along (5) is

_V1 � x1(x2 + �
�T
1  1(x1)) + b

�

1jx1j�̂1(x1)

+(�̂1 � �
�

1)
T
�
�1

1

_̂
�1 +

1

�1
(b̂1 � b

�

1)
_̂
b1 (6)

Consider the following change of coordinates

z1 = x1; z2 = x2 � �1(x1; �̂1; b̂1) with

�1 = �k1x1 � �̂
T
1  1(x1)� b̂1�̂1(x1) tanh[

x1�̂1(x1)

�1
]

where �1 is a small positive constant and k1 > 0.
As in (Plycarpou and Ioannou, 1995), in order to
prevent parameters drift, we present the following
adaptive law incorporating a leakage term based
on a variant of the �-modi�cation. Let

�11 = �1x1 1(x1)� �1��1 (�̂1 � �
0
1) (7)

_̂
b1 = �1x1�̂1(x1) tanh[

x1�̂1(x1)

�1
]� �1�b1 (b̂1 � b

0
1)(8)

where ��1 > 0; �b1 > 0 and �
0
1 ; b

0
1 > 0 are

design constants. Using �1, (7) and (8), a direct
substitution of x2 = z2 + �1 into (6) gives

_V1 ��k1x
2
1 + x1z2 + (�̂1 � �

�

1)
T
�
�1

1 (
_̂
�1 � �11)

+b
�

1jx1j�̂1(x1)� b
�

1x1�̂1(x1) tanh[
x1�̂1(x1)

�1
]

���1(�̂1 � �
�

1)
T (�̂1 � �

0
1)� �b1 (b̂1 � b

�

1)(b̂1 � b
0
1)

By completing the squares and using the fol-
lowing nice property with regard to function
tanh(�) (Plycarpou and Ioannou, 1995): 0 � jxj �
x tanh(x

�
) � 0:2785�; for � > 0; x 2 R, we have,

_V1 ��k1z
2
1 �

1

2
��1 j�̂1 � �

�

1 j
2
�

1

2
�b1(b̂1 � b

�

1)
2

+(�̂1 � �
�

1)
T
�
�1

1 (
_̂
�1 � �11) + z1z2 + b

�

10:2785�1

+
1

2
��1 j�

�

1 � �
0
1 j
2
+

1

2
�b1(b

�

1 � b
0
1)
2

Step 2: Let V2 = V1+
1
2
z
2
2+

1
2
(�̂2���2)T��12 (�̂2�

�
�

2)+
1
2�2

(b̂2� b�2)2, di�erentiating V2 with respect
to time gives

_V2 = _V1 + z2

h
x3 + �

�T
2  2 + !2 +�2 �

@�1

@�̂1

_̂
�1

�
@�1

@x1
(x2 + �

�T
1  1 + !1 +�1)�

@�1

@b̂1

_̂
b1

i

+(�̂2 � �
�

2)
T
�
�1

2

_̂
�2 +

1

�2
(b̂2 � b

�

2)
_̂
b2

In view of Assumptions 1 and 3, we have

z2

�
!2 +�2 �

@�1

@x1
(!1 +�1)

�

� jz2j

�
p
�

2�2 + Æ
�

2 + j
@�1

@x1
j(p

�

1�1 + Æ
�

1)

�
� b

�

2jz2j�̂2

where b�2 = maxfp�1; p�2; Æ�1 ; Æ�2g, �̂2 � �2 + 1 +

j@�1
@x1

j(�1 + 1) is a smooth positive function. Let

z3 = x3 � �2, and we select tuning functions
�12; �22, stabilizing function �2, and adaptive law

for b̂2 as follows



�12 = �11 +�1z2
@�1

@x1
 1

�22 = �2z2 2 � �2��2(�̂2 � �
0
2)

_̂
b2 = �2z2�̂2 tanh

h
z2�̂2

�2

i
� �2�b2 (b̂2 � b

0
2)

�2 =�k2z2 � z1 � b̂2�̂2 tanh

h
z2�̂2

�2

i

��̂
T
2  2 +

@�1

@x1
x2 +

@�1

@b̂1

_̂
b1 +

@�1

@�̂1
�12 + �̂

T
1

@�1

@x1
 1

Using the derivation procedures as in Step 1, a
straightforward calculation yields

_V2 ��

2X
j=1

kjz
2
j �

2X
j=1

1

2
��j j�̂j � �

�

j j
2

�

2X
j=1

1

2
�bj (b̂j � b

�

j )
2
+ z2z3

+

�
(�̂1 � �

�

1)
T
�
�1

1 � z2
@�1

@�̂1

�
(
_̂
�1 � �12)

+(�̂2 � �
�

2)
T
�
�1

2 (
_̂
�2 � �22) +

2X
j=1

b
�

j0:2785�j

+

2X
j=1

1

2
��j j�

�

j � �
0
j j
2 +

2X
j=1

1

2
�bj (b

�

j � b
0
j)
2

Step i (3 � i � n): A similar procedure is
employed recursively for each step i = 3; � � � ; n�1.
Consider the Lyapunov function candidate Vi =

Vi�1+
1
2
z
2
i +

1
2
(�̂i���i )T��1i (�̂i���i )+ 1

2�i
(b̂i�b�i )2.

Di�erentiating Vi with respect to time gives

_Vi = _Vi�1 + zi

h
xi+1 + �

�T
i  i(�xi) + !i(�xi) + �i(t; x)

�

i�1X
j=1

@�i�1

@xj
(xj+1 + �

�T
j  j(�xj) + !j(�xj)

+�j(t; x))�

i�1X
j=1

@�i�1

@�̂j

_̂
�j �

i�1X
j=1

@�i�1

@b̂j

_̂
bj

i

+(�̂i � �
�

i )
T
�
�1

i

_̂
�i +

1

�i
(b̂i � b

�

i )
_̂
bi

In view of Assumptions 1 and 3, we have

zi

�
�i(t; x)�

i�1X
j=1

@�i�1

@xj
�j(t; x) + !i �

i�1X
j=1

@�i�1

@xj
!j

�

� jzij

h
p
�

i �i +

i�1X
j=1

p
�

j

��@�i�1
@xj

���j + Æ
�

i +

i�1X
j=1

��@�i�1
@xj

��Æ�j
i

� b
�

i jzij�̂i(�xi)

where b�i = maxfp�1; � � � ; p�i ; Æ�1 ; � � � ; Æ�i g; �̂i(�xi) �
�i+

Pi�1

j=1

��@�i�1
@xj

���j+1+Pi�1

j=1

��@�i�1
@xj

�� is a smooth
positive function. By selecting �m;i(m = 1; � � � ; i�
1); �i;i; �i and adaptive law for b̂i as follows

�m;i = �m;i�1 + �mzi

i�1X
j=1

@�i�1

@xj
 j ; m = 1; � � � ; i� 1

�i;i =�izi i � �i��i(�̂i � �
0
i )

_̂
bi = �izi�̂i tanh

h
zi�̂i

�i

i
� �i�bi(b̂i � b

0
i )

�i =�kizi � zi�1 � b̂i�̂i tanh

h
zi�̂i

�i

i
� �̂

T
i  i

+

i�1X
j=1

(
@�i�1

@xj
xj+1 +

@�i�1

@b̂j

_̂
bj)

+

i�1X
m=1

(
@�i�1

@�̂m
�m;i + �̂

T
m

i�1X
j=1

@�i�1

@xj
 j)

and using the same techniques as done previously,
we can obtain that

_Vi ��

iX
j=1

kjz
2
j �

iX
j=1

1

2
��j j�̂j � �

�

j j
2

�

iX
j=1

1

2
�bj (b̂j � b

�

j )
2
+ zizi+1

+(�̂i � �
�

i )
T
�
�1

i (
_̂
�i � �i;i) +

iX
j=1

b
�

j0:2785�j

+

i�1X
m=1

�
(�̂m � �

�

m)
T
�
�1
m �

i�1X
j=m

zj+1
@�j

@�̂m

�
(
_̂
�m

��m;i) +

iX
j=1

1

2
��j j�

�

j � �
0
j j
2
+

iX
j=1

1

2
�bj (b

�

j � b
0
j )
2

Step n: In this �nal step, the actual control u
appears, and we �nally present the update laws
for �̂i; i = 1; � � � ; n.

Theorem 1. For semi-strict feedback nonlinear
system (3), under Assumptions 1 and 3, if we
apply the control design procedure in the above
statement, the solutions of the resulting closed-
loop system are uniformly ultimately bounded.
Furthermore, given any �

�
>
p
2�, there exists

T such that, for all t � T , we have jz(t)j � �
�.

The compact set 
z = fz 2 Rn : jz(t)j � �
�g can

be made as small as desired by an appropriate
choice of the design constants. Correspondingly,
the output y(t) satis�es the following property:

jy(t)j �
p
2�+ 2Vn(0)e�c1t (9)

where � := c2
c1
, and constants c1 > 0 and c2 > 0

are de�ned as c1 := minf2kj ; ��j

�min(�
�1

j
)
; �bj�j ; j =

1; � � � ; ng, c2 :=
Pn

j=1 b
�

j0:2785�j+
Pn

j=1
1
2
��j j��j�

�
0
j j2+

Pn

j=1
1
2
�bj (b

�

j�b0j)2, with kj ;�j ; �j ; ��j ; �bj ,
�j being design parameters.

Proof: Based on the coordinate change zn = xn�
�n�1, the time derivative of the overall Lyapunov

function candidate Vn = Vn�1 +
1
2
z
2
n + 1

2
(�̂n �

�
�

n)
T��1n (�̂n � �

�

n) +
1

2�n
(b̂n � b

�

n)
2 satis�es



_Vn � _Vn�1 + zn

h
�(x)u+ �

�T
n  n �

n�1X
j=1

@�n�1

@xj
(xj+1

+�
�T
j  j)�

n�1X
j=1

@�n�1

@�̂j

_̂
�j �

n�1X
j=1

@�n�1

@b̂j

_̂
bj

i

+b
�

njznj�̂n + (�̂n � �
�

n)
T
�
�1
n

_̂
�n +

1

�n
(b̂n � b

�

n)
_̂
bn

where b�n = maxfp�1; � � � ; p�n; Æ�1 ; � � � ; Æ�ng, �̂n(�xn) =
�n +

Pn�1
j=1

��@�n�1
@xj

���j + 1 +
Pn�1

j=1

��@�n�1
@xj

��.
By selecting �m;n(m = 1; � � � ; n � 1); �n;n; �n and

adaptive law for b̂n as follows

�m;n = �m;n�1 + �mzn

n�1X
j=1

@�n�1

@xj
 j ;

m = 1; � � � ; n� 1 (10)

�n;n = �nzn n � �n��n(�̂n � �
0
n) (11)

_̂
bn = �nzn�̂n tanh

h
zn�̂n

�n

i
� �n�bn(b̂n � b

0
n) (12)

�n =�knzn � zn�1 � b̂n�̂n tanh

h
zn�̂n

�n

i
� �̂

T
n n

+

n�1X
j=1

(
@�n�1

@xj
xj+1 +

@�n�1

@b̂j

_̂
bj)

+

n�1X
m=1

(
@�n�1

@�̂m
�m;n + �̂

T
m

n�1X
j=1

@�n�1

@xj
 j) (13)

and letting
_̂
�m = �m;n;m = 1; � � � ; n, u = �n

�(x)
.

Similarly, straightforward calculation yields

_Vn ��
nX

j=1

kjz
2
j �

nX
j=1

1

2
��j j�̂j � �

�

j j2

�
nX

j=1

1

2
�bj (b̂j � b

�

j )
2 +

nX
j=1

1

2
��j j��j � �

0
j j2

+

nX
j=1

1

2
�bj (b

�

j � b
0
j )
2 +

nX
j=1

b
�

j0:2785�j

This leads to _Vn � �c1Vn+c2, then Vn(t) satis�es

0 � Vn(t) � �+ [Vn(0)� �]e�c1t (14)

Therefore z(t); �̂i(t); b̂i(t)(i = 1; � � � ; n) and x(t)
are uniformly ultimately bounded. Since y(t) =
x1(t) = z1(t), from the de�nition of Vn and (14),
the property (9) can be easily obtained. Thus,
by appropriately choosing the design constants,
we can achieve the regulation of the output y(t)
to any prescribed accuracy while keeping the
boundedness of all the signals and states of the
close-loop system. }

3.2 Control Design with all gi Unknown (i =
1; � � � ; n)

In this subsection, we give the robust adaptive
control design algorithms for system (1) where
all virtual control coeÆcients gi; i = 1; � � � ; n
are unknown. The complete design procedure is
given by the following expressions (with z0 =
0; �0 = 0; ĝ0 = 0): De�ne the unknown bounds

as: b�i = maxfp�1; � � � ; p�i ; Æ�1 ; � � � ; Æ�i g, �̂i(�xi) �
�i +

Pi�1
j=1

��@�i�1
@xj

���j + 1 +
Pi�1

j=1

��@�i�1
@xj

�� is a

smooth positive function. Coordinate transforma-
tion: zi = xi � �i�1; i = 1; � � � ; n. Tuning func-

tions for �̂i:

�i;i =�izi i � �i��i(�̂i � �
0
i ); i = 1; � � � ; n

�i;k = �i;k�1 +�izk

k�1X
j=1

@�k�1

@xj
 j ;

i = 1; � � � ; n� 1; k = i+ 1; � � � ; n

Tuning functions for ĝi; i = 1; � � � ; n� 1:

�i;i = �%izizi+1 � �%i�gi(ĝi � g
0
i );

�i;k = �i;k�1 � �%i
@�i

@xi
xi+1zk; k = i+ 1; � � � ; n

Stabilizing functions:

�i = %̂i ��i; i = 1; � � � ; n� 1

��i =�kizi � ĝi�1zi�1 � b̂i�̂i tanh

h
zi�̂i

�i

i
� �̂

T
i  i

+

i�1X
j=1

@�i�1

@xj
ĝjxj+1 +

i�1X
j=1

@�i�1

@b̂j

_̂
bj

+

i�1X
j=1

@�i�1

@%̂j
_̂%j +

i�1X
m=1

(
@�i�1

@�̂m
�m;i

+�̂
T
m

i�1X
j=1

@�i�1

@xj
 j); i = 1; � � � ; n � 1

�n =�knzn � zn�1 � b̂n�̂n tanh

h
zn�̂n

�n

i
� �̂

T
n n

+

n�1X
j=1

@�n�1

@xj
ĝjxj+1 +

n�1X
j=1

(
@�n�1

@xj
xj+1

+
@�n�1

@b̂j

_̂
bj) +

n�1X
m=1

(
@�n�1

@�̂m
�m;n

+�̂
T
m

n�1X
j=1

@�n�1

@xj
 j)

Adaptive control law: u = %̂n
�(x)

�n. Parameters

update laws:

_̂
�i = �i;n; i = 1; � � � ; n
_̂
bi = �izi�̂i tanh

h
zi�̂i

�i

i
� �i�bi(b̂i � b

0
i );

_̂gi = �i;n i = 1; � � � ; n� 1



_̂%i =��%isgn(gi)�izi + �%i�%i(%̂i � %
0
i ):

4. SIMULATION

Consider the regulation of the second-order sys-
tem _x1 = g1x2 + f1(x1) + �1(t; x), _x2 =
g2u + f2(x) + �2(t; x), y = x1, where x =
[x1; x2]

T , g1; g2 are unknown virtual control coef-
�cients, but with known signs. We assume that
g1 > 0; g2 > 0. f1(x); f2(x) are unknown sys-
tem functions, and �1(t; x);�2(t; x) are unknown
bounded disturbances. For simulation purpose,
we let f1(x1) = 0:1x21, f2(x) = 0:2e�x2 +
x1 sin(x2), �1(t; x) = 0:6 sin(x2), �2(t; x) =
0:5(x21 + x

2
2) sin

3
t, and g1 = 1 and g2 = 1.

The bounds on �1 and �2 are j�1(x; t)j �
p
�

1�1(x1), j�2(x; t)j � p
�

2�2(x), where p
�

1 := 0:6,
p
�

2 := 0:5, �1(x1) = 1, and �2(x) = x
2
1 + x

2
2.

We use RBF NNs to approximate f1(x1); f2(x),
i.e., f1(x1) = �

�T
1  1(x1) + !1(x1); f2(x) =

�
�T
2  2(x) + !2(x), where j!1j � Æ

�

1 ; j!2j �
Æ
�

2 . b
�

1 = maxfÆ�1 ; p�1g; b�2 = maxfÆ�1 ; Æ�1 ; p�1; p�2g.
For the design of robust adaptive controller, let
�̂1; �̂2; b̂1; b̂2; ĝ1; %̂1, and %̂2 be the estimates of un-
known parameters ��1 ; �

�

2 ; b
�

1; b
�

2; g1; %1 = 1
g1
, and

%2 = 1
g2
, and z1 = x1; z2 = x2 � �1. The

following initial conditions and controller design
parameters are adopted in the simulation: x(0) =

[1; 1]T ; �̂1(0) = 0; �̂2(0) = 0; b̂1(0) = 0; b̂2(0) =
0; ĝ1(0) = 0; %̂1(0) = 0, %̂2(0) = 0, and k1 = k2 =
2, �1 = �2 = 10, �1 = �2 = �%1 = �%2 = 1, ��1 =
��2 = �%1 = �%2 = �b1 = �b1 = 0:1, �1 = �2 = 0:1,
�
0
1 = �

0
2 = 0, and b01 = b

0
2 = %

0
1 = %

0
2 = g

0
1 = 0:1.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4
System output

Time (sec)

Fig. 1. Output y

0 5 10 15 20 25 30
−120

−100

−80

−60

−40

−20

0

20
Control signal

Time (sec)

Fig. 2. Control input u

5. CONCLUSION

In this paper, a robust adaptive control approach
for a class of uncertain semi-strict feedback non-
linear systems with unknown virtual control co-
eÆcients has been presented. Simulation results
have shown the e�ectiveness of the proposed
method.
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