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Abstract: This paper describes the design of an observer for use in a distributed parameter
control system which is used to regulate the surface temperature profile of a tool or die
being manufactured by sprayforming. The observer design is complicated by the time varying
obscuration of the surface from the sensor caused by the equipment performing the spraying.
Three potential observer designs are presented and compared.
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1. INTRODUCTION

Tools and dies are required for many manufacturing
processes including the stamping of body panels in the
automotive industry, the laying up of aerofoil sections
in the aerospace industry and injection moulding in the
plastics industry. The market for the supply of tools
and dies is worth in excess of$10billion per annum.
The conventional method for producing tooling is to
use a CNC machine to mill out the required shape
from a metal block, but this can be a lengthy process,
particularly for large pieces where the metal block has
to be cast before the milling can start. A recently de-
veloped alternative process involves creating a ceramic
substrate whose shape is the inverse of the required
tool. Molten metal is then sprayed onto the surface of
the ceramic to build up a metal shell (referred to as the
sprayform) that accurately reproduces the topography
of the ceramic (Newberyet al., 1998). Compared to
the conventional “subtractive" process where metal is
removed, the additive spray process has the potential
to be much quicker, giving significant advantages for
flexible manufacturing.

The main technical difficulty with the sprayforming
process is that the sprayed molten metal contracts as
it cools. In order for the sprayed shell to be used
in tooling applications, it is essential that the spray-
form satisfies strict tolerances on the dimensional ac-

curacy of the shell. An important feature of the pro-
cess is that it relies on the metal droplets undergo-
ing prescribed phase transformations as they cool af-
ter being deposited on the surface of the sprayform
(Jordan and Roche, 1999). Ensuring that the metal
undergoes an expansive phase transformation from
austenite, which has a face centered cubic structure,
to martensite, which has a body centered tetragonal
structure (Honeycombe and Bhadeshia, 1995), offsets
the natural contraction of the metal as it cools. This
allows the dimensional accuracy of the sprayform to
be maintained. In order that the required transforma-
tions occur, accurate regulation of the thermal history
of the sprayed material is necessary. One method of
regulating the thermal history is to control the tem-
perature of the surface, which ensures that the cooling
curve for the deposited material passes through a given
temperature at a specific time after deposition. This
paper describes the design of a state observer used
in the implementation of a system for regulating the
temperature profile of the sprayform surface during
spraying.

2. DESCRIPTION OF EQUIPMENT

A schematic of the sprayforming equipment is shown
in figure 1.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



Fig. 1. Schematic of sprayform tooling equipment

The spray forming process deposits molten metal from
a cluster of four Sulzer Metco SmartArc electric arc
spray guns onto a ceramic substrate to form a metal
shell that accurately reproduces the topography of
the ceramic. The molten metal is produced by direct
current arcing between two oppositely charged wires
made of 0.8wt%C steel. The arcing causes the wire tips
to melt and a high-pressure nitrogen gas stream contin-
uously strips molten material from the arc, atomising
it into a spray of droplets. The gas stream carries the
droplets to the surface of the object where they are
deposited. Wire is continuously fed to the arc guns to
maintain the flow of sprayed metal and the amount of
metal that is deposited can be adjusted by changing the
feed rate of the wire.

The droplet spray from the guns is scanned over the
surface of the ceramic substrate by a 6-axis industrial
robot in a pre-determined, repetitive manner, referred
to as the “path plan". The temperature profile on the
surface is recorded by a thermal imaging camera,
positioned directly above the sprayform.

The equipment is housed in a booth and a fan blows
a stream of air (at a velocity of 4ms−1) across the
surface of the sprayform to remove dust, fumes and
splashed material from the spray that does not adhere
to the surface.

3. DESCRIPTION OF CONTROL SYSTEM

The surface temperature profile of the sprayform is
controlled using a distributed parameter control system
(Joneset al., 2002). There is only a single actuation
variable, the wire feed rate of the arc spray guns, but
the location of the actuator changes as the robot moves

the guns over the surface. This is an example of mo-
bile control (Butkovskiy and Pustylnikov, 1987). The
sensor for the control system is the thermal imaging
camera which provides information about the surface
temperature profile during the spraying process.

The control design is based upon a partial differential
equation (PDE) model of the heating effect of the
spray guns as they are tracked across the surface of
the sprayform. An additional complication is that the
nitrogen gas used to propel the molten droplets acts
as a source of cooling which must be included in the
thermal model. The resulting PDE is

ρcz(t)
∂θ(x, y, t)

∂t
=

Kz(t)∇2θ(x, y, t)−Haθ(x, y, t)

+f(x, y, t)u(t)[θg − θ] + g(x, y, t)[θn − θ]

(1)

where,

ρ = density of sprayform (Kg m−3)
c = specific heat capacity of sprayform (J Kg−1 K−1)
z(t) = thickness of sprayform (m)
θ(x, y, t) = temperature of sprayform surface (K)
Ha = heat transfer coefficient from sprayform to air

(W m−2 K−1)
f(x, y, t) = heat flux footprint of guns (J kg m−2)
u(t) = wire feed rate to guns (kg s−1)
θg = temperature of sprayed droplets from guns (K)
g(x, y, t) = nitrogen cooling footprint from guns

(J kg m−2)
θn = temperature of nitrogen from guns (K)

A discrete time finite dimensional state space model
can be derived from the PDE (Pathiranaet al., 2002)

qk+1 = Aqk + Bkuk + Dk + Wk (2)

yk = Ckqk + Vk (3)

whereBk represents the time varying heat input from
guns,uk is the wire feed rate to the guns,Dk repre-
sents the time varying cooling from the guns,Wk is
the state noise andVk is the measurement noise.

An optimal time varying control law can be designed
for this state space system (Pathiranaet al., 2002)
which takes the general form,

uk = −Kkqk (4)

whereKk is the optimal controller gain matrix.

The control law is implemented in C++ on a PC. The
thermal data from the camera enters the PC through
a framegrabber card. The actuation signals are sent to
the arc spray gun controllers via a digital to analogue
converter card in the PC.

For a sprayform of dimension300mm by 300mm and
thickness5mm the time constant of the fastest con-



trollable mode is of the order 60s. However, the robot
typically moves at0.2ms−1, so it will move from
one side of the sprayform to the other in1.5s. This
means that the sample time is chosen not because of
the constraint of the thermal dynamics of the system,
but instead by the rate of change of theBk andDk

terms. For this reason the sample time for the system
is chosen to be 0.1s.

4. MOTIVATION FOR STATE OBSERVER

The controller relies on knowledge of the current sys-
tem states,qk. The system states cannot be measured
directly so an observer is required to provide an es-
timate of the state vector,̂qk. The observer uses the
information from the thermal images together with the
state space model of the system to generate the state
estimate.

The design of the observer is complicated by the fact
that the camera cannot see all of the surface. Areas
of each image contain varying amounts of invalid
data because the robot, guns and gun cables obscure
the camera’s view of the surface (Jones and Duncan,
2001). The obscured areas in the image cannot be
predicted because although the robot and guns follow
a predetermined path, the cables connected to the guns
are free to lie in any orientation. There are further
invalid regions around these obscured areas caused
by out of focus blurring as the objects causing the
obscuration are outside the focal plane of the camera.
The obscured and blurred pixels can be removed using
a pruning filter algorithm (Jones and Duncan, 2001)
to leave a valid measurement vector,yv

k. This valid
measurement vector has variable and unpredictable
length dependent on the number of valid pixels in a
given image. The measurement equation, (3), becomes
time varying

yv
k = Cv

kqk + Vv
k (5)

whereCv
k andVv

k are formed by extracting the rows
from Ck andVk which correspond to the valid pixels
remaining inyv

k.

5. STATE OBSERVER DESIGN

Assuming the state and measurement noise models
to be independent zero mean white sequences with
known, constant covariance matrices thenE[WkWT

k′ ] =
Qδ(k − k′) andE[VkVT

k′ ] = Rδ(k − k′).

Although the full measurement noise covariance ma-
trix is constant, the actual measurement noise covari-
ance matrix varies with the number and position of the
valid pixels in the measurement vector. The result is a
time varying covariance matrix,Rv

k.

The linear minimum variance of error sequential state
estimation algorithm with these noise models is the
Kalman filter (Sage and Melsa, 1971).

Three potential designs for Kalman filter based ob-
servers were investigated.

5.1 Design 1

The first method examined is the use of the full op-
timal time varying Kalman filter. Using the standard
equations from (Gelb, 1974) or (Gustafsson, 2000) for
the system described gives the algorithm,

Online computation per sample time

Lk = Pk|k−1CvT

k [Cv
kPk|k−1CvT

k + Rv
k]−1(6)

q̂k|k = q̂k|k−1 + Lk[yv
k −Cv

kq̂k|k−1] (7)

Pk|k = [I− LkCv
k]Pk|k−1 (8)

q̂k+1|k = Aq̂k|k + Bkuk + Dk (9)

Pk+1|k = APk|kAT + Q (10)

whereLk is the Kalman gain matrix.

This method uses all of the available measurement data
optimally to create an estimate of the state vector.

The Kalman gain update equation involves the inver-
sion of aNk × Nk matrix, whereNk is the number
of valid pixels at sample timek. In this implemen-
tation the thermal images contain 17689 pixels, so
0 ≤ Nk ≤ 17689. Unless the number of valid pixels
is very small for all sample times, this computationally
intensive task is infeasible given the constraint of the
desired sample time, 0.1s.

5.2 Design 2

One method of reducing the computational burden
of the Kalman filter algorithm is to settle for a sub-
optimal time invariant Kalman gain obtained from,

L = PCT[CPCT + R]−1 (11)

where P is the state error covariance given by the
solution to the discrete algebraic Ricatti equation
(Middleton and Goodwin, 1990)

APAT −P−
APCT(CPCT + R)−1CPAT + Q = 0 (12)

Online computation per sample time

q̂k|k = q̂k|k−1 + Lv
k[yv

k −Cv
kq̂k|k−1] (13)

q̂k+1|k = Aq̂k|k + Bkuk + Dk (14)

A significant amount of the online computation has
been taken offline at the expense of the loss of optimal-
ity. This allows the implementation to be run within the
constraint of the 0.1s sample time. The Kalman gain



is now optimal only for instances where the measure-
ment vector is complete. If the measurement vector
is incomplete, as is nearly always the case, then the
Kalman gain will not be optimal, causing inaccurate
state estimation.

5.3 Design 3

A further method of reducing the computational bur-
den, without sacrificing optimality, is to use sequential
processing of the pixel information in the valid mea-
surement vector (Gustafsson, 2000). If all of the pixels
in the valid measurement vector are used then this
method is equivalent to design 1, but with a superior
computational efficiency. A further advantage is that if
not all of the valid measurement vector can be used in
the sample time then the iteration can be stopped with
only a partial loss of information. The equations are,

Online computation repeated for each pixel used
from measurement vector each sample time

Lp = Pp|p−1CT
p [CpPp|p−1CT

p + Rp]−1 (15)

q̂p|p = q̂p|p−1 + Lp[yp −Cpq̂p|p−1] (16)

Pp|p = [I− LpCp]Pp|p−1 (17)

where yp denotes a single pixel measurement at a
location in the image determined byp, Cp is the row
of C corresponding top.

Online computation performed once per sample
time

q̂k+1|k = Aq̂k|k + Bkuk + Dk (18)

Pk+1|k = APk|kAT + Q (19)

If all of the valid measurement vector is used then
the Nk × Nk matrix inversion of design 1 has been
replaced withNk scalar inversions.

If all of the pixels used in the measurement update are
positioned near to the node of a given state, then that
state is estimated poorly. Therefore, if the sample time
constraint dictates that only part of the measurement
vector can be processed, the pixels should be used in
a random order for the iterative measurement update.
This increases the accuracy of the state vector estimate.

This observer design is the optimal use of the measure-
ment information given the processing time constraint.

6. TESTING AND RESULTS

To test the observer designs Matlab simulations of
them were developed. The simulation for design 1
could not be used because the size of the matrices
caused Matlab to run out of memory. The other two
designs were simulated with one complete measure-
ment update cycle. The state estimate and state error

Fig. 2. Image representing initial state vector, a con-
stant temperature surface at240oC

Fig. 3. Measurement image, left half at215oC and
right half at265oC

covariance extrapolations were not performed as they
are equivalent for all the methods. Both observers used
a 25 element state vector and defined the noise covari-
ance matrices as,

Q = 100I

R = I

For the first test the observers were started with an
initial state vector that described a flat temperature
profile at 240oC (figure 2) and were then used to
update the state vector using a full measurement image
which had the left half at215oC and the right half at
265oC (figure 3). Both design 2 and design 3 matched
the final state estimate to the measurement state with
this much information. This was expected because
designs 2 and 3 are equivalent when the measurement
vector is full.



Fig. 4. Obscured measurement image with only 7% of
pixels valid, left half at215oC and right half at
265oC

Fig. 5. Image representing the result of the obscured
measurement update for observer design 2

For the second test the observers were started with
the same initial state vector (figure 2) but were used
to update the state vector using only 7% of the pixels
from the previous full measurement image (figure 4).
This was done to model the effect of invalid pixels in
the measurement vector. The results in figures 5 and 6
show that the optimal observer (design 3) gave better
matching of the final state estimate to the measurement
state than the sub-optimal observer (design 2).

7. CONCLUSION

This paper has described the sprayforming process
used for manufacturing tools and dies. For the process
to create dimensionally accurate parts the temperature
of the surface during spraying must be controlled. This
is done using a distributed parameter control system
which uses a thermal imaging camera as its sensor and

Fig. 6. Image representing the result of the obscured
measurement update for observer design 3

actuates the rate at which wire is fed to the arc spray
guns.

The system’s state vector cannot be measured directly
so an observer is required. The observer design is com-
plicated by the fact that the movement of the robot,
spray guns and cables between the camera and the
surface of the sprayform causes the thermal images to
contain variable amounts and positions of invalid pix-
els. The observer is further constrained by the sample
time. When the valid pixels are extracted the result is
a time varying measurement equation. Three observer
designs were investigated to solve the problem, an
optimal time varying Kalman filter, a sub-optimal fixed
gain Kalman filter and an optimal sequential measure-
ment update Kalman filter. The observer designs were
tested and it was found that the sequential measure-
ment update method was the best given the constraints
of accuracy and computation time.
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