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Abstract: In this paper the robust stability of an autonomous mobile robot based on a 
parametric approach is presented. The closed-loop control consists of Multi-Input / Multi-
Output (MIMO) uncertain plant (mobile robot) and a MIMO Proportional Integral (PI) 
controller. Using Kharitonov’s Theorem and Zero Exclusion Condition the closed-loop 
system is proved to be robustly stable in the presence of parameter variations or the 
system dynamics which are sensitive with respect to these parameters (Uncertainty). 
Simulation results are presented to demonstrate the robust analysis and to prove the 
robust s tability of the closed-loop system. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
Almost all-dynamic systems depend on varying or 
uncertain parameters and this is certainty true for 
small mobile robots. For instance, consider the 
velocity of a mobile robot (i.e. due to the battery 
variations), or the mass of a mobile robot (i.e. adding 
or removing components) all these parameters may 
vary more or less significantly within certain bounds 
and they influence the system dynamics. Traditional 
control design approaches consider a fixed operating 
point in which the controller (compensator) is robust 
enough to stabilise the plant for different operating 
conditions.  These approaches produce good results if 
the parameter variations are small or the system 
dynamics are not too sensitive with respect to these 
parameters. For significant (large) parameter 
variations  these  control  design  methods  reach 
their  performance  limits.  Robust control theory 

based on interval polynomials is an effective 
approach when considering plant uncertainty. The 
interval polynomial problem was first posed by 
Faedo (1953) who attempted to solve it using the 
Routh-Hurwitz conditions. Kharitonov (1978) gave 
the complete solution with his theorem for real 
polynomials, which then he extended to the complex 
case. Since then many papers have been published 
based on parametric approach regarding robust 
stability of uncertain plants (Siljak, 1989; 
Kontogiannis and Munro, 1996).   
      
The main objective of this paper is to show that the 
closed-loop system (mobile robot and controller) is 
robustly stable to varying or uncertain parameters. 
The parametric approach based on interval 
polynomials using Kharitonov theorem was chosen 
due to its simplicity and its suitability when 
considering uncertainty of interval polynomials.        
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This paper is organised into 5 sections. The control of 
the MIABOT V2 mobile robot is described in section 
2. Section 3 presents the robust stability analysis for 
interval polynomials together with a number of 
simulations to verify the robust stability of the 
closed-loop system. Some discussions of the work 
are given in section 4. Finally, section 5 contains the 
conclusions of the work presented. 
 
 

2. CONTROL OF MIABOT V2 MOBILE ROBOT 
 
MIABOT V2 mobile robots shown in Fig 1 are a 
small sized (8cm3), two-wheeled autonomous mobile 
robots, which have the ability to achieve speeds up to 
1-1.5m/sec by driving each wheel independently (two 
DC motors). A Multi-Input / Multi-Output   (MIMO) 
Proportional Integral (PI) controller has been 
designed for accurate speed control.  
 
Fig 2 shows the overall system structure of the 
closed-loop control. The open-loop robot model 

( )sG  consists of two inputs, and two outputs. The 
inputs are left and right voltages of the left and right 
wheel respectively. Outputs are the speed of the left 
and right wheel. The second-order dynamic model of 
the mobile robot is described in the following 
transfer function matrix (TFM) form: 
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Similarly the MIMO PI controller ( )sGc  is described 
in the following TFM form: 
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Fig. 1. MIABOT V2 mobile robots. 
 

 
 
 
 
 
 
 
 
Fig. 2. Closed-loop system. 
 
Equations (3a, 3b, 3c and 3d) describe the closed-
loop system illustrated in Fig 2. 
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Fig 3 shows the transfer function description 
expanded for the MIMO system in Fig 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The transfer function matrix description 

expanded for the 2x2 system (plant and 
controller) 

 
 
The characteristic equation given in Equation (4) will 
be used for the testing of the robust stability of the 
closed-loop system given Fig 2. 
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3. ROBUST STABILITY ANALYSIS FOR 
INTERVAL POLYNOMIALS 

 
In this section definitions and theorems related to 
robust stability analysis for interval polynomials are 
given (Bhattacharyya, et al., 1995). First the 
description of uncertainty structure is given through 
several definitions following by both definitions and 
theorems regarding value sets and zero exclusion 
condition. Then the Kharitonov’s theorem (Barmish, 
1994) is described in brief together with results of the 
application (closed-loop control). Finally, the robust 
stability of the closed-loop control is demonstrated 
using graphical techniques. 
 
 
3.1 Description of uncertainty structure. 
 
Definition 1 (Uncertainty Bounding Set): The 
uncertainty bounding set Q  is the set 
 
 { }liforRqRQ i

l ,...,2,1=∈∈= q  (5) 

 
Note that sqi '  and therefore need not be connected. 
However, connected sets will be used since much of 
the results in literature apply only to connected sets. 
This assumption is not restrictive because most of the 
physical parameters (such as viscous friction 
coefficients, material properties, lengths, etc) 
entering the uncertainty vector vary continuously 
over a bounded interval of the real line. 
 
Frequently, each element iq  of q  is described by its 

lower and upper bounds −
iq  and +

iq , respectively. 
Then the uncertainty set is the box 
 

 { }liforqqqRQ iii
l ,...,2,1=<<∈= +−q  (6) 

 
Definition 2 (Family): An uncertain function together 
with its uncertainty bounding set is called a family 
i.e. 
 
 ( ) ( ){ }QfQ ∈= qq.,.,F  (7) 

  
For example, an uncertain plant ( )q,sG  and its 
uncertainty bounding set Q  form a family of plants 

denoted by ( ) ( ){ }QsGQs ∈= qq,,G . Similarly, it can 

be written ( ) ( ){ }QsNQs ∈= qq,,n  for the family of 

numerators and ( ) ( ){ }QsDQs ∈= qq,,d  for the 
family of denominators. 
 
Definition 3 (Independent Uncertainty Structure): An 
uncertain polynomial 
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is said to have an independent uncertainty structure if 
each component iq  of q  enters into only one 
coefficient. 
 
Definition 4 (Affine Linear Uncertainty Structure): 
An uncertain polynomial ( )q,sp  is said to have an 
affine linear uncertainty structure if each coefficient 
function ( )qia  is of the form 
 
 ( ) i

T
ii aa β+= qq  (9) 

 
where ia  is a column vector and iβ  is a scalar 
 
Definition 5 (Multilinear Uncertainty Structure): An 
uncertain polynomial ( )q,sp  is said to have a 
multilinear uncertainty structure if each function 

( )qia  is a multilinear function in the components of 
q . That is, if all but one uncertain parameter is kept 

constant, then ( )qia  is affine linear in the remaining 
component of q . 
 
Definition 6 (Polynomic Uncertainty Structure): An 
uncertain polynomial ( )q,sp  is said to have a 
polynomic uncertainty structure if each coefficient 
function ( )qia  is a multivariable polynomial in the 
components of q . 
 
 
3.2 Value sets and zero exclusion condition. 
 
Definition 7 (Value Set): The value set is the subset 
of the complex plane consisting of all values which 
can be assumed by ( )q,ωjp  as q  ranges over Q  
(ω  is a fixed frequency). 
 
Theorem 1 (Zero Exclusion Condition): A 
polynomial family ( )Qs,P  having invariant degree 
with associated uncertainty bounding set Q , which is 
pathwise connected, continuous coefficient functions 

( )qia  for ni ,...,2,1,0=  and at least one stable 

member ( )*,qsp  is robustly stable if and only if the 
origin of the complex plane is excluded from the 
value set ( )Q,jP ω  at all nonnegative frequencies i.e. 
 

( )q,0 ωjp∈  
 
for all frequencies 0≥ω  and Q∈q . 
 
Definition 8 (Robust Stability): An uncertain system 
with the characteristic polynomial ( )q,sp  is robustly 

stable if and only if ( )q,sp  is stable for all Q∈q , 
where Q  is the uncertainty bounding set. 
 



     

Definition 9 (Interval Polynomial Family): A family 
of polynomials ( ) ( ){ }QspQs ∈= qq,,P  is said to be 

an interval polynomial family if ( )q,sp  has an 
independent uncertainty structure, each coefficient 
depends continuously on q  and the uncertainty 

bounding set Q  is a −n dimensional box. 
 
For brevity, is also referred to ( )Qs,P  as an interval 
polynomial. Similarly, a family of uncertain plants 

( ) ( ) ( ) ( ){ }QsDsNsGQs ∈== qqqq ,/,,,G  is said to 

be an interval plant family if both ( )q,sN  and 

( )q,sD  are interval polynomials. 
 
 
3.3 Kharitonov’s theorem. 
 
Definition 10 (Kharitonov Polynomials): Associated 
with the interval polynomial family 
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are four fixed Kharitonov polynomials  
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Theorem 2 (Kharitonov’s Theorem): An interval 
polynomial family ( )Qs,P  with invariant degree is 
robustly stable if and only if its four Kharitonov 
polynomials are stable. 
 
Definition 11 (Kharitonov Rectangle): Associated 
with the four Kharitonov polynomials ( )sK 1 , ( )sK 2 , 

( )sK 3  and ( )sK 4  is a rectangle (the Kharitonov 

rectangle) whose four vertices are obtained by 
evaluating the four Kharitonov polynomials at 

0ωjs = . Therefore given an interval polynomial 

family ( )Qs,P  and a fixed frequency 0ωω = , the 

value set ( )Qj ,0ωP  is a rectangle whose vertices are 

given by ( )0ωjK i  for 4,3,2,1=i . 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The Kharitonov rectangle for 00 ≥ω . 

Fig. 4 shows a generic Kharitonov rectangle. Note 
that the size and the position of the Kharitonov 
rectangle change with ω , while its sides always 
remain parallel to the respective real and imaginary 
axes. Therefore, as we sweep the frequancy over a 
certain polynomial, we can observe the motion of the 
Kharitonov rectangle. 
 
 
3.4 The application (robust stability of mobile robot) 
 
According to the definitions and theorems from 
subsection 3.1, 3.2 and 3.3 the robust stability of the 
closed-loop system of Equation (4) can be proved. 
Equation (4) can be written as interval polynomial in 
the following form: 
 
 ( ) 01

2
2

3
3

4
4, qsqsqsqsqsp ++++=q   (15) 

 
where  
 
 ],,,,[ 01234 qqqqq=q  (16) 
 
is the vector of uncertain parameters, and assume that 
 

[ ]2,14 ∈q , [ ]2.136,2.1233 ∈q , [ ]6579,59512 ∈q , 
[ ]141230,1277801 ∈q , [ ]1133000,10251000 ∈q  

 
then the uncertainty bounding set (Definition 1) is  
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The above interval polynomial family is denoted by 
writing an interval polynomial family of the form: 
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where [ ] [ ]⇒=∉ +− 2,1,0 44 qq   
 
interval polynomial family ( )Qs,P  has invariant 
degree. 
 
From Definition 10 the four fixed Kharitonov 
polynomials are derived as follows: 
 
 ( ) 102510012778065792.136 234
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Using Routh criterion it is easy to verify that all four 
Kharitonov polynomials are stable (Routh column is 
positive in all cases). Hence it can be concluded that 
the closed-loop control system is robustly stable. The 
same conclusions can be drawn using the Zero 
Exclusion Condition in subsection 3.5 below.  
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3.5 Robust stability testing via graphics. 
 
The Kharitonov rectangle provides a very handy 
graphical means to test the robust s tability of physical 
systems. Plots of successive Kharitonov rectangles 
over the frequency interval [ )∞∈ ,0ω , can produce 
observation of their motion in the complex plane. 
This plot together with the following theorem enables 
checking the stability of interval polynomials. 
 
Theorem 3 (Zero Exclusion for Interval Families): 
An interval polynomial family 

( ) ( ){ }QspQs ∈= qq,,P  having invariant degree and 

at least one stable member ( )*,qsp  is robustly stable 
if and only if the origin of the complex plane is 
excluded from the Kharitonov rectangle at all 
nonnegative frequencies i.e. ( )Qj ,0 0ωP∉  for all 
frequencies 0≥ω . 
 
In practice, there is not need to plot the Kharitonov 
rectangles for all 0≥ω . A cut-off frequency 0>cω  

can be obtained  such that ( )Qj ,0 0ωP∉  for all 

cωω ≥ . One such estimate, suggested from the 
classical bounds on the roots of a polynomial, 
provides an appropriate cut-off frequency as given by  
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for the interval polynomial ( )q,sp  with 0>−

nq  ( n  
is the order of the polynomial). 
 
Instead of generating two-dimensional Kharitonov 
rectangles, examination of the plot of the scalar 
function ( )ωH  (Frequency Sweeping Function) is 

determine if the family of polynomials P  is robustly 
stable. 
 
Theorem 4 (Frequency Sweeping Function for 
Robust Stability): Let P  be an interval polynomial 
family with interval degree, at least one stable 
member and associated Kharitonov polynomials 

( )sK 1 , ( )sK 2 , ( )sK 3  and ( )sK 4 . Then with 
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it follows that P  is robustly stable if and only 
if ( ) 0>ωH  for all frequencies 0≥ω . 
 
 
3.6 Verification of the closed-loop robust stability 
 
To verify that the closed loop control system is 
robustly stable further testing using graphics is 
performed using the Theorem 3 and 4. The 
characteristic equation of the closed-loop system is 

given in Equation (4). Equations (15) and (16) both 
provide the uncertainty vector q  and the uncertainty 

bounding set Q . It was already shown that the 

interval polynomial family ( )Qs,P  has invariant 
degree. In accordance with Theorem 3, the first step 
in the graphical test for robust stability requires that 
at least one polynomial in ( )Qs,P  that is stable. 
Using the midpoint of each interval from Equation 

(17) *q  is obtained as follows: 
 

 ( )1079050,134505,6265,7.129,5.1* =q  (25) 
 
then  
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Using the Routh criterion it is easy to verify that 

( )*,qsp  is stable. The cut-off frequency can be 
calculated from Equation (22) as follows: 
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The Kharitonov rectangles can be plotted to verify 
the stability of the closed loop system for frequency 
range [ ] srad /1133001,0∈ω . For more convenient 
frequency range [ ] srad /100,0∈ω  plot is shown in 
order the zero point in the graph to be visible. Fig 5 
shows the Kharitonov rectangles for the closed-loop 
system. Fig 6 shows the plot of the frequency 
sweeping function ( )ωH .          
 
Since the origin is excluded from the Kharitonov 
rectangles (Fig 5) it is concluded that the closed-loop 
control system is robustly stable. The same 
conclusion can be obtained from Fig 6 because it can 
be observed that the frequency sweeping function 

( )ωH  is positive for all [ ] srad /100,0∈ω .   

 
Fig. 5. Kharitonov rectangles for the controlled 

closed-loop control system. 



     

Fig. 6. A plot of ( )ωH versus ω . 
 
 

4. DISCUSSIONS 
 
The uncertainty of the closed-loop system was 
modelled by replacing the coefficients of the closed-
loop characteristic equation of the MIMO system 
with closed interval polynomials. Although the 
robust stability was proven, a question remains of 
how to map a closed-loop characteristic equation of 
system to the system’s physical parameters. For 
example, the mobile robot for which the robust 
analysis took place weighs 0.5 kg. If there was a need 
for 10% increase of its mass (i.e. adding more 
sensing elements) how the coefficients of the closed–
loop characteristic equation will change is of interest. 
To map the change of the robot’s mass to the change 
in the coefficients of the closed-loop characteristic 
equation is very difficult. In order to demonstrate 
this, consider the modified open-loop robot transfer 
function matrix in Equation (28), and the closed-loop 
transfer function of the system in Equation (29a, 29b, 
29c, 29d) resulting from the 10% increase in mass. It 
can be observed that the intervals used for Equation 
(16) do not include all the variations in coefficients 
resulting from a 10% increase in mass. Care must 
therefore be taken in selecting the most suitable 
interval in order to accommodate the range of the 
expected parameter variations. The closed-loop 
control system described in Equations (3a, 3b, 3c, 3d) 
was tested again for robust stability based on new 
uncertainty bounding set given in equation (30) and 
was found to be robustly stable.     
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5. CONCLUSIONS 
 
In this paper the robust analysis of a closed-loop 
MIMO system based on parametric approach was 
investigated. Robust stability is vital due to the 
dynamics of the system. To demonstrate robust 
stability the Kharitonov theorem was used, based on 
interval polynomials control theory. The closed-loop 
control system was shown to be robustly stable under 
uncertainty based on closed intervals (first arbitrary 
then specific). Finally the robust stability was verified 
using graphical techniques based on Zero Exclusion 
Condition.       
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