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Abstract:In this paper, under some assumptions a nonlinear controller based on 
differential geometry theory of nonlinear control system and pole-assignment method is 
designed,  and applied to synchronize output signals of high dimensional chaotic system. 
Using the method, we can synchronize output signals formed by linear or nonlinear 
composition of single or multiple state variables of the chaotic system. The controller is 
easy to be realized and can be adapted to a lot of nonlinear systems. Computer simulation 
results show the excellent performance of the proposed method. Copyright © 2002 IFAC 
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1 INTRODUCTION 
 
In the last decade, synchronization in chaotic 
dynamical systems has received a great deal of 
interest among scientists from various fields 
(Carroll & Perora,1990;Chen & Dong,1998). As 
a particular class of nonlinear systems, chaotic 
systems can also be controlled well by many 
methods which are proved effective for 
numerous nonlinear systems (Bernardo, 1996;Ge    
et al., 2000; Femat et al., 2000; Hegazi et 
al.,2001; Fah & Tung,1995). Fah & Tung(Fah & 
Tung,1995) use exact linearization method to 
control chaotic systems, and based on it noise 
has been studied by Liaw & Tung (Liaw & 
Tung,1996). Through combining differential 
geometry with nonlinear dynamical system 
theory, a method is proposed which can 
synchronize arbitrarily designated scalar output 
signal composed of either single state variable or 
linear or nonlinear combination of multiple state 
variables of chaotic system (Gao et al., 2000a; 
Gao et al.,2000b). On these basis , in this paper, 
a controller is designed by differential geometry 
theory and pole-assignment method, which 
extends the above mentioned results to 
multi-input and multi-output situation. 
 
 

2. PROBLEM DESCRIPTION 
 
Consider two multi-variable nonlinear 

systems  
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(1) is called the driving system and (2) is called 
the driven system. The problem considered in 
this paper is how to design a suitable control 
law u which makes the outputs of (1) and (2) 
satisfy： 

0||ˆ||lim =−
∞→
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        (3) 

Since nonautonomous systems can always be 
transformed to autonomous systems by 
extending state space (Wiggins,1990), therefore, 
we only consider the case in which (2) is 
autonomous.  
 

 
3 CONTROLLER DESIGN 

 
First, we introduce some terminologies in 
nonlinear control system theory (Isdori,1989; 
Zhang ,Cai& Bien , 2000) . 
Define j-th Lie derivative of function )(xhi  
respect to )(xf  as: 
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Denote { }δδ <−= 00 ),( xxxxB  as the 

neighborhood of 0x , in which δ >0.  

Definition    (2) has vector relative degree 
},,{ 1 mrr K at 0x  if  
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(ii) mm ×  matrix 
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   (4)            

is nonsingular at 0x . 

Proposition (Isdori,1989) Suppose (2) has a 
(vector) relative degree },,{ 1 mrr K at 0x .Then 

nrr m ≤++L1 . Set, for mi ≤≤1  
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if mrrr ++= L1 is strictly less than n ,it is 
always possible to find rn − functions 

nr φφ ,,1 K+  such that  the mapping 
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has a jacobian matrix which is nonsingular at 
0x and therefore, qualifies as a local coordinates 

transformation in a neighborhood of 0x .The 
value of these additional functions at 0x can be 
chosen arbitrarily. Moreover, if the distribution 

},,{ 1 mspan ggG K=  

is involutive near 0x ,it is always possible to 
choose nr φφ ,,1 K+ in such a way that 

,0)( =xg ij
L φ  

for all ,1 nir ≤≤+ for all ,1 mj ≤≤  for all x 

around 0x . 
Transformed by Φ  (2) becomes 
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when 0ξ = ， ),( η0qη =& is called zero dynamics 
of system (5). 

Next we discuss the controller design. 

Hypothesis 1 Suppose the reference signal 
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Hypothesis 2 To system (2), no matter whether 
the case is in equilibrium, period, quasi-period, 
chaos or hyperchaos, the following conditions 
always hold: 
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Remark 1: In this paper, we suppose all outputs 
of (1) and (2) are available.  
Remark 2:    Although    hypothesis2 looked quite 
strict, the hypothesis is easy to be satisfied since 
the move- ment of chaotic system is in a 
bounded region. 
 
Denote partial-variable-errors of synchronization 
as  
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Theorem  If multi-input and multi-output 
system(2) has vector relative degree r respect to 
some g(x) and satisfies hypothesis1 and 
hypothesis2，suppose control law u is selected as  
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proof: Since (2) satisfies hypothesis 1 and 
hypothesis 2, from (10) we can know that the 
control is bounded. Substitute (10), (11) into (9), 
we get 

eBKAe )( −=& ,          (12) 
from (6),(7) we have, 
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According to the selection method of K ,we 
know all eigenvalues of iii KBA −  are nega- 
tive ,so (9) is asymptotic stable, and moreover, 
in above procedure we don’t use initial value, so 
(9) is global asymptotic stable.           □ 

Remark 3：：：：Since the choice of g(x) is quite 
flexible，usually we can find appropriate g(x) 
which makes (2) have vector relative degree. 
 

 
4 SIMULATION 

 
Consider following nonlinear system  
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it is the model of heart-blood coupling 
movement, in which 































−−
+×−+

+−
+−+

−
−−
+−

=

.ˆˆ
,ˆˆ100.6ˆ0.5ˆ

,ˆˆ
,ˆˆˆˆ

,ˆˆˆ
,ˆˆˆˆ
,ˆˆˆ

)ˆ(

460

1
3
6

4
670

141

7
3
434251

321

3121

412

xMxP
xHxxxP

xDxP
xMxPxPxP

xGxx
xxxxA
xBxExE

xf  

where parameters 
,0.16=E 92.45=A , 0.5=B are constants. 

When ,0.4=G ,0.100 =P ,4.31 =P  ,0.602 =P  

,100.12 5
3 ×=P  ,5.1=M  ,012.0=D  

012.0=H , the maximal Lyapunov exponent of 
the system is 2.162(He et al., 2000) therefore, 



 

the system is chaotic, which is shown in figure1. 
Suppose the dynamics and output of the 
controlled system equal those of (13),but the 
initial condition is not the case, so the controlled 
system can be written as: 

,
,

,)()(

52

11

xy
xy

=
=

+= uxgxfx&
          (14) 

The aim of simulation is to synchronize the 
output of (13) and (14) by devising controller u. 
Choose 
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By simple calculating we know (14) has vector 
relative degree (3,2) and from (4), (8) we get 
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the controller is devised according to (13). 
Assign all poles of (15) at -2, and therefore, 
K1=(8, 16, 6), K2=(4, 4). Figure2 shows that 
the outputs of (16) and (17) are synchronized, 
which proves that the controller is effective.  
 

5  CONCLUSION 
 
In this paper, based on multi-input and 
multi-output differential geometry theory and 
pole-assignment method, a controller is designed. 
The designing method is easy to be realized and 

computer simulation has proved its effectiveness. 
The research results in this paper can be adapted 
to quite a wide class of nonlinear systems such 
as can be applied to secret communication 
especially in the situation without enough 
channel resources.   
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Fig1. phase diagram of system (13) 
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