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Abstract: The problem of robust decentralized reliable control for a class of uncertain
interconnected delayed systems through state feedback and dynamic output feedback is
investigated in this paper. Based on Lypunov stability theory, a decentralized observer
and a linear memoryless state feedback decentralized controller are designed such that for
all admissible uncertainties as well as actuator failures occurring among a preassigned
subset of actuators, the closed loop system is asymptotically stable. The conclusions
extend and improve some results in the literature. The emulation is given to illustrate the
validity of the obtained results. Copyright © 2002 IFAC
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1. INTRODUCTION

Recently, the problem of robust reliable
control for the uncertain delayed systems was
studied in many empirical papers (see, for example,
Wang, et al., 1999, Zhao, and Jiang, 1998, Wang,
et al., 1996, Seo, and kim, 1996). Most of these
papers discussed the questions of centralized
control. In allusion to the interconnected systems,
Hu, et al, (1996) gave us a method to design a
decentralized controller when all of the actuators of
one subsystem failure. In Xu (2000), the problem
of state feedback and dynamic output feedback
decentralized stabilization was discussed for partly
actuator failures occurring among a preassigned
subset of actuators, but the input matrix of the
system had no uncertainties.

In this paper, a class of interconnected
systems is discussed, which not only has state
delayed and input delayed term but also has
uncertainties in the state matrix and input matrix.
Based on the Riccati equation method, a sufficient
condition of state feedback and dynamic output
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feedback is obtained for reliable decentralized
stabilization. This method is more flexible than Su,
et al. (1999) in the way of adjusting and choosing
parameters. At the same time, the model of the
system in this paper is more general. In section 2, it
is shown the description of the system, some
necessary assumption, and the questions that will
be resolved in the paper. In section 3 and section 4,
the state feedback controllers and the dynamic
feedback controllers are designed. An emulation is
given in section 5 and in section 6 the final
conclusions are drawn.

2. SYSTEM DESCRIPTION AND PROBLEMS

Consider the following nonlinear uncertain
interconnected delayed system:

xi )= (Ai + AA;‘ (t))xi (®)
+ (Aid + AAid (t))xi (t - dil )
+ (B, + AB, (0)u, (1
+(By +AB, ()u,(t—d,,)
S LD+ Y Ax (- hy) ()

j=L

V() =Cix,(?)



x,(t)=¢.(t) te[-d . 0] i=12,---,m

Where x;(1) € R",u,(t)e R",y,(t)e R" are
the state vector, control input vector and output
vector of the ith subsystems at time t.

4,,4,,B,,B, and A, are the known delayed
constant matrixes which have proper dimensions.
AA,,A4,,,AB,,AB,, are the

uncertain matrixes of the ith subsystem. f;(x,,?)

time-varying

is uncertain vector space, it shows the structure
uncertainty of the ith subsystem. d,,,d,,,h; (> 0)

are delayed constants. d =max{d,,d,,,h,}.

@, (1) is the continual state vector initial function.

Assumption 1 The parameter uncertainties in
system (1) have following form:

AB(1) = H,F,()E;,AB, (t) = H ,F;, (1) E},
A (1) = M F, ()N, ,Ad, (t) = M, F, ()N,
2
Where H,,H, M, M,,E E N, ,N,, are
constant matrixes with proper dimensions.
F.(t),F,(t) are unknown function matrixes
which satisfy the inequalities:
E'(OF,(0) < LES (OF, () <1
i=L2,--,m 3)

Assumption 2 The nonlinear uncertainty
f:(x,,t) in system (1) satisfies the condition

o] <[6ix ]
i=12,,m (4)

G, is constant matrix with proper dimension.

Here, suppose the set of the admissible failure
actuators in the ith subsystem can be denoted

asQ, c {,2,--,q,}, it means the actuators in €2,

are redundant for the system stability, but they can
improve the properties of the system.

Problem:
(1) For system (1)-(4), design decentralized
linear memoryless state feedback controllers:

u, =K,x, i=12,--,m (5
which make the close loop system of system (1)
asymptotically  stable for all  admissible
uncertainties as well as actuator failures occurring

among €2, .
(2) Design decentralized dynamic output
feedback controllers:

u, (1) =—K;x,(t) (6)
X,(t) = A% (0) + Ay %, (t—dy)
+Bu,(t)+B,u,(t—4d,,)
+ L (3 ()= C& (1) + iAi,;ej(z “h) ()
which make the close loopj slystem of system (1)
asymptotically  stable for all admissible

uncertainties as well as actuator failures occurring
among (2, .

3. DESIGNING OF DECENTRALIZED LINEAR
MEMORYLESS STATE FEEDBACK
RELEABLE CONTROLLERS

(1) Consider that there are no actuator failures

(Qi :CD)

Theorem 1 If there are positive constants
EisEinsr€insEiarVi»Via» Vs and matrix K, such
that the following inequality has a positive definite
solution matrix P , then the controller (5) can

make the close loop system of system (1)
asymptotically stable.

P(4,+BK)+ (4, +BK,) P
+PRP +0, <0
i=12,,m ®)

In above inequality the parameters are as
following:

R, = 5i1MthT + 7/f1HinT + ‘91‘2‘41‘4‘41{1
+‘9i3MidMiZ +7izBidBiZ +7i3HidHicTz )

+e,+Y A, A5
J#i
O,=&,'N/N, +(g; +m-DI
+E3NgNy +7, K/ E/EK, (10)

+ 5,'_41GTG + 7/1‘_21K1‘TK1‘ + 7i_31KfTEiZEidKf

Proof: It similar to the proof of theorem 5.1.1
in Xu (2000).

The distinguishing lies in: denotes
- U arT
Syp=énl+esNyNy,
S zyi_leiTKi +7/i_31KiTEuTJEidKi (11)

In V(x), there are questions how to deal with
AB.,AB,, .
2x; ()PAB K x,(t)
=2x! ()PH F,(t)E K x,(t)
<yax (OPH H] Px,(1)
+yx (OK] ElE.K,x, () (12)
2x] ()P,AB, K x,(t-d,;)
=2x/ (VPH , F,(DE K x,(t—d,,)
<yuX (OPH  H iy Px, (1)
+yaX (t=d,)K] EyE K x (t—d,,)
(13)

Thus the conclusion can be drawn by using (8),

(9), (10).



Corollary 1 Design linear memoryless state
feedback decentralized controller for system (1) as
following:

u, (1) =Kx, (1)
K[ = _[7;11EiTEi + 731 + 7i73|Ei§Eid]7l BtTPi
i=12,---,m (14)

Proof: Conclusion of theorem 1 can be made
good use of to prove this corollary.

Remark: corollary 1 gives us the method to
design the controllers.

(2) Consider that partly of the actuators fail
(Q, #®)

Suppose the corresponding input is zero while
the actuator failures, then when W, C Q. is

satisfied, the affection of the actuator failures to the
input can be shown as a switched matrix

E, =diag(e,,e,,,e, ), which will be put
between the input matrix B, and the input gain
matrix K, , where

e, =Li=12,--,m
The kth actuator of the ith subsystem doesn’t fail

e, =0,k=12,---,q
The kth actuator of the ith subsystem fails

(15)

The fault close loop system can be rewritten
as:

%,(0)=[4, + M,F,()N, + BE, K,
+H,F,()E,E, K,1x,()
+[A, + M F, (N, Tx.(t —d.)
+ [BidEw’_ K, +H,F,(HE,
E K ]x(t—d;)
+ i Ayx; (¢ = hy)

J#i

i=1,2,,m (16)

Theorem 2 If there exist positive constants
Ei1>8i25:€13>845 V11>V s Vi3 such  that  the
following Riccati inequality has symmetric positive
definite solution matrix 15, ,

Pa,+ AR +PRE+0, <0 (17)

Ei = 5i1MthT + 7/i1HiHiT

T T
+e,d,, 4, + €M M,
+ 71‘231‘4351 + 7i3HidHicTz
n 18
+e, 0+ A, A5 (18)
J#
- Bt[yilEiTEi + 7;211
-1 T -1 T
+rsEqEy] EQ[Bi

O, =¢,'NIN, + (s} +m—-1)I

(19)
+e;NLN, +¢&,G'G

Then, the fault close loop system (15) is
asymptotically stable for arbitrary W, < QQ, and

parameter uncertainties by the linear memeoryless
state feedback decentralized controller:

u;(t) = Kx,(1)
Ki = _[7/i_11EiTEi +7/i_211+7/i_31EichEid]_lBiTﬁi

(20)

Proof: It is similar to theorem 1 and corollary
1, here,

S =70 BBy EVE, +751
+ V3 BBy Eq,BP,
+ VR EgBB i EVE + 751
+ VR EGE ) Ea BRE, QD
and E;,l E, =E, , E, —E, are semi-positive

definite matrixes.

4. DESIGNING OF DECENTRALIZED
DYNAMIC OUTPUT FEEDBACK
CONTROLLERS

1) Q =0
Denotes e, () =x,(t)—x,(t) , the error

equation can be transformed into the following
form:

éi (1)=(4; —L,C))e; (1)
+ Aidei (t - dil ) + AAixi (t)
+ A4, x (1 —dy) + ABu, (1)
+ABu (1 —dy) + fi(x;,1)
+) Ax;(t—hy) (22)
J#i
Theorem 3 If there exist &, (k=12,3,4),
V(s =L12,---,6) and matrixes L;,K,, such that
the following Riccati inequalities have symmetric

answer matrixes P, , P, , where

ic>*i0 >

P.(4, -BK)+(4, -BK)"P,

+ ])icRic})ic + Qic < 0 (23)
PiO (Ai - LiCi) + (Ai - LiCi )TPio
+ PioRiOPio + QiO <0 24

R, = gilMiMiT + giZAid A;
+e M M, +¢&,]+BB'
+ ZA;‘;‘A;‘/T‘ +(7y 7/i2)HiHiT
i
(st 7i4)BidBicTz + (s + 7i6)HidHi]¢;
(25)
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(26)
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27
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Then the dynamic output feedback controller
(6) (7) can make the close loop system
asymptotically stable.

Corollary 2 If there exist positive constants
g, (k=1234),y, (s=12,---,6), such that the
Riccati matrix inequalities (29) and (30) have

symmetric positive definite matrixes P, 1_),.0 ,
where

r\

1+Ai
A

]
AN

S
~Ul J‘UI

+P.R.P +0, < (29)
ot PR, 13, +0, <

i=12,---.m (30)
Ec =€i1MiMi +é&,4y AzzTJ +5i3MidMiZ

0“5

+e,+(1-a)B B + ZAU ;
i 31

+ (7 +712)HiHiT +(7is +}/i4)BidBi§
+(}/i5+}/16)HldHT
Q.=(1+&, YN'N, + (s +m—-1)I

(32)
+(l+gi3 )N,.dNid +(1+5,,4 )G G
a=[1+yHYE'E +y I
[( 7/11) i i 7/13 (33)
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R, =R, (35)
o=[(1+ E E +(1+ I
[( 74) A+73) 36)
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then, system (1) can be stabilized by dynamic
output feedback controller (6) (7) with

K, =aBP,. L = fP,'C! (37)

2)Q, =0

Similarly to theorem 2, the fault close loop
system and error equations can be written as (16)
and (38).

é(t)y=(4,—L.C)e,(t)+ A e (t—d,;)

+AA4,x;(t)+ A, x,(t—d,)
+ ABiEwi Ki (t)[xi Ok € (]

+ ABidKi [xi (t) —-¢€ (t)] + fi(xi’t)

+ ZAij (t— (38)

J#I

Theorem 4 If there exist positive constants
e, (k=1234),y,.(s=12,---,6) such that
Riccati matrix inequalities (39) (40) have

symmetric positive solve matrixes R F:o , where
P,A+A'P,+P,R P, +Q, <0 (39)
IOA +A 10 +EOEIO_IO +Q10 < 0
i=1.2, (40)
R, =g, MM +e,4,4, +&,M, M;
+&,0+(1-a)B,E, BT+ZAU :

P (41)
+(7a +7i2)HiHiT + (75 +7i4)BidBicTz
+(7:s +7t6)HidHT

0, =(+&"N/'N, +(g;) +m-1)I

42
HA+EONIN, +(+ehd'G P
Z[(1+7i1 )Ei E, E, +7i_311
l 43)
+(1+7t:¢1)EuTzEQiEid]_l
0., ==2BCTC. +ml
QlO ﬂz i m (44)

+a’oP, B,E, B/ P,
R, =R, (45)
S=[0+y,)EE, E+(1+y4)1

+(+y,ELE, Eld]’

(46)

then, for arbitrary W, < €2, and admissible

uncertainties ,system (1) can be robust stabilized by
the dynamic output feedback controller (6) (7) with

K,=aBP,, L, = fP,'C! (47)

Remark: In this paper, the resolving of Riccati
inequalities can be changed into the solving of LMI.

5. EMULATION

Consider a system with N = 2. The special
data are as following:

-55 1 0 0.3
4, = s A4, =
-1 -6 -02 0.5
0
BI=B,d=m, c=[2 2]
F()= F, () =sint
0.3
M =M,,=H =H, =

0.15
02 O
A12 = >
03 0.1

E =E,=02, N,

. =05 0]

=0 0.5]



-50 05 0.12 -0.07
Az = > Azd =
-03 -80 0.04 —0.01
0.2
Mz :M2d :Hz :sz = 0.1
N,=[0 05], N, =[0.5 0]
0.2 —0.2}

0.5 -0.3
d,=02,d,=03,d,=03,d, =03

E,=E,, =05, 4, {

Suppose Q, ={1} , Q) ={2} , it means
Eq =diag{0,l} and E, = diag{l,0}

By using theorem 2, the follows can be
obtained

7 0.54 0.39 5 - 2225 025
"1039 058" | 025 2225

- {2.3051 0.2626}
P

1

710.2626  2.1644
u, = K,x,(1)=-0.0498 *[0 1]* P,
=[-0.0131 -0.1078]
7 _{0.3105 0.2467} ~ {22.25 0.25}
0.2467 0.4329 025 2225
E _{0.2251 0.0025}
0.0025 0.1391
u, = K,x,(t)=—0.0488*[1 0]* P,
=[-0.011 —0.0001]

2

’ 22

2

1 1
0s 05
i i
5 1 2 3 4 1 2 3
1 1
0s 05
] i
5 1 2 3 % 1 2 3

Fig. 1. Curves of the states of the system

6. CONCLUSION

In this paper the problem of reliable control
for the uncertain delayed composite system with
state delay and control delay is studied. And the
sufficient condition for the memeoryless state
feedback and dynamic output feedback robust
reliable stabilization is obtained. The controllers
can be designed by resolving two Riccati
inequalities (or LMI). Comparing with the existing
literature, it has three merits:

(1) There are uncertainties in the input
matrixes of the system such that the conclusion can
be used in a more extensive range.

(2) In the process of designing the controllers,
the adjusting and choosing parameters are more
agility.

(3) For the delayed term, there’s no need for
the boundary of it’s differential.
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