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Abstract: Robust hybrid controller design is presented in this paper for motion/force
control of mechanical systems subjected to a set of holonomic or classical nonholo-
nomic constraints and in the presence of uncertainties about plant parameters. A
uni�ed and systematic procedure is employed to derive the controllers for both holo-
nomic and nonholonomic constrained mechanical systems, respectively. The proposed
controllers can guarantee the system motion asymptotically converges to the desired
manifold, and the force tracking errors to be bounded. Numerical simulation has been
done to show the e�ectiveness of the proposed controllers. Copyright c
2002IFA C
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1. INTRODUCTION

In recent years, muc h attention has been devoted
to the problem of controlling mechanical systems
with holonomic or nonholonomic constraints. The
constrained robot is the most typical holonomic
control system. In many industrial tasks such as
writing, scribing, and grinding, the robot's end-
e�ector is required to keep contact with its envi-
ronment. During the execution of such tasks, con-
tact forces are included betw eenthe end-e�ector
and en vironmental constraint surfaces. Hence, a
hybrid motion/force control design for robot ma-
nipulators under this kind of constrained motion
is necessary.

Both trajectory tracking and force control are
manageable with a constrained robot if the exact
robot dynamic model is available to the controller.
Di�erent adv ancedcontrol techniques have been
successfully applied to solve the motion/force con-
trol problem, such as hybrid schemes for both po-
sition tracking and force control, nonlinear decou-
pling method, descriptor method and computed-
torque controller. All these methods depend on

the exact cancellation of the robot dynamics to
achiev ethe tw ocontrol objectives (Raibert and
Craig, 1981; Mills and Goldenberg, 1989; Mc-
Clamroch and Wang, 1988). In real applications,
how ev er, perfect cancellation of the robot dynam-
ics is rarely possible. Thanks to the researc hes
in (Carelli and Kelly, 1991; Y oung, 1988), the
motion control part can be reduced to a problem
similar to the free-motion control of a robot with
less degrees of freedom. F orce control, how ever,
remains a diÆcult problem. The use of force feed-
bac kwas considered in (Su et al., 1992; Grabbe
and Bridges, 1994) to improve the force con trol
performance.

On the other hand, considerable attention has
been paid to the motion control of nonholonomic
constrained mechanical systems during last few
years. It is w ellknown that in rolling or cutting
motions, the kinematic constraint equations are
classical nonholonomic and the dynamics of such
systems is also w ellunderstood. As considerable
researc hw orksare concentrated on motion con-
trol of classical nonholonomic mechanical systems
(I. and H., 1995; Campion et al., 1991; Sark ar

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



et al., 1994), the motion/force control of these
systems represents another important class of
control problems (Su and Stepanenko, 1994; Su
and Stepanenko, 1995). In both researches, how-
ever, the control law requires the knowledge of
the regressor matrix. Implementation of this ap-
proach requires a precise knowledge of the struc-
ture of the entire dynamic model. Hence, develop-
ment of an alternative approach to treat the mo-
tion/force control of holonomic and nonholonomic
constrained mechanical systems with plant uncer-
tainties and external disturbances is highly desir-
able. In this paper, robust and adaptive robust
control algorithms for motion/force control of un-
certain constrained mechanical systems are con-
sidered. The controllers are non-regressor based
and require no information on the system dynam-
ics.

2. SYSTEM DESCRIPTIONS

According to the Euler-Lagrangian formulation,
the joint-space dynamics of an n-dimensional con-
strained mechanical system can be described as

D(q)�q +C(q; _q) _q+G(q) + d = B(q)� + f (1)

where q = [q1; : : : ; qn]
T 2 R

n denotes the
vector of generalized coordinates; D(q) 2 R

n�n

is the symmetric bounded positive de�nite inertia
matrix; C( _q;q) _q 2 R

n denotes the Centripetal
and Coriolis torques; G(q) 2 R

n is the gravi-
tational torque vector; B 2 R

n�r is a full rank
input transformation matrix and is assumed to be
known because it is a function of �xed geometry
of the system, � 2 R

r is the vector of generalized
control input force with r � n � m; d denotes
the external disturbances and f = JT (q)� denotes
the constraint force due to the reaction of the
following two cases.

Property 1. : There exist some constants ci >

0 (1 � i � 4) and c5 � 0 such that 8q 2
R
n
; 8 _q 2 R

n jjD(q)jj � c1, jjC(q; _q)jj � c2 +
c3jj _qjj, jjG(q)jj � c4, and sup

t�0jjd(t)jj � c5.

2.1 Holonomic constrained mechanical systems

Consideringm independent frictionless constraints
expressed as

�(q) = 0 2 R
m (2)

De�ning

J(q) =
@�

@q
(3)

It is a common assumption that the constraints
are holonomic and frictionless, and �(q) is twice

continuously di�erentiable. Hence, the holonomic
constraint on the robot's end e�ector can be
viewed as restricting only the dynamics on the
constraint manifold 
h de�ned by


h = f(q; _q)j�(q) = 0;J(q) _q = 0g (4)

The vector q 2 R
n can always be properly

rearranged and partitioned into the form q =

[q1
T

q2
T

]T , q1 = [q11 : : : q
1
n�m]

T 2 R
n�m de-

scribes the constrained motion of the manipulator
and q2 = [q21 : : : q

2
m
]T 2 R

m denotes the remain-
ing joint variables. Moreover, there is a unique
function � : R

n�m ! R
m such that the con-

straint condition can always be expressed as q2 =
�(q1) (McClamroch and Wang, 1988). By de�ning

L(q1) = [IT
n�m

@�(q1)

@q1

T

]T , In�m 2 R
(n�m)�(n�m)

is an identity matrix, it can be obtained

_q = L(q1) _q1 (5)

The dynamic model (1) of robots, when restricted
to the constraint surface, can be expressed in the
reduced form as

D(q1)L(q1)�q1 +C1(q
1
; _q1) _q1 +G(q1) + d

= B� + JT (q1)� (6)

where C1 = D(q1) _L(q1) +C(q1; _q1)L(q1).

Property 2. : Matrix DL = LTDL is symmetric
and positive de�nite.

Property 3. : Matrix _DL�2CL is skew-symmetric,
CL = LTC1.

Property 4. : LT (q1)JT (q1) = J(q1)L(q1) = 0.

2.2 Nonholonomic constrained mechanical systems

When the system is subjected with nonholonomic
constraint, the m nonintegrable and independent
velocity constraints can be expressed as

J(q) _q = 0 (7)

where J : Rn ! R
m�n is the kinematic constraint

matrix which is assume to have full rank m.
The constraint (7) is referred to the classical
nonholonomic constraint when it is not integrable.
The e�ect of the constraints can be viewed as
restricting the dynamics on the manifold 
nh as


nh = f(q; _q)jJ(q) _q = 0g (8)

It is noted that since the nonholonomic constraint
(7) is nonintegrable, there is no explicit restriction
on the values of the con�guration variables.



Let r1(q); : : : ; rn�m(q) be a set of smooth and
linearly independent vector �elds in the null space
of J(q). Then, the following relations are satis�ed
in local coordinates

J(q)R(q) = 0 (9)

whereR(q) = [r1(q); : : : ; rn�m(q)] 2 R
n�(n�m).

Constraints (7) and (9) imply the existence of
vector _z 2 R

n�m, such that

_q = R(q) _z (10)

The dynamic equation (1), which satis�es the
nonholonomic constraint (7), can be rewritten in
terms of the internal state variable _z as (Su and
Stepanenko, 1994; Chang and Chen, 2000)

D(q)R(q)�z +C2(q; _q) _z+G(q)

= B(q)� + JT (q)� + d (11)

where C2(q; _q) = D(q) _R(q) +C(q; _q)R(q).

Property 5. : Matrix DR = RTDR is symmetric
and positive-de�nite.

Property 6. : Matrix NR = _DR � 2CR is skew-
symmetric, CR = RTC2 .

Property 7. : RT (q)JT (q) = 0.

3. ROBUST CONTROL DESIGN

In this section, robust controller design for holo-
nomic mechanical systems as well as nonholo-
nomic mechanical systems with plant uncertain-
ties and external disturbances is considered.

3.1 Robust control of holonomic mechanical systems

The control objective is speci�ed as: given a de-
sired joint trajectory qd(t) and a desired con-
straint force fd(t), or, equivalently, a desired mul-
tiplier �d(t), determine a control law such that for
any (q(0); _q(0)) 2 
h, q

1
; _q and � asymptotically

converge to a manifold 
hd speci�ed as


hd = f(q; _q; �)jq1 = q1
d
; _q = L(q) _q1

d
; � = �dg

Assumption 1. : The desired reference trajectory
qd(t) is assumed to be bounded and uniformly
continuous, and has bounded and uniformly con-
tinuous derivatives up to the second order. The de-
sired Lagrangian multiplier �d(t) is also assumed
to be bounded and uniformly continuous.

In the following, de�ne eq1 = q1�q1
d
, e� = ���d,

_q1
r
= _q1

d
� �1eq1 and s = _eq1 + �1eq1 . Apparently

_q1 = _q1
r
+ s (12)

Consider the control law as

B� = �KLs� L+s�2

jjsjj�+ Æ
� JT�c (13)

where K is positive de�nite, L+ is the left inverse
of LT de�ned as L+ = L(LTL)�1, Æ(t) > 0

such that
R
t

0
Æ(!)d! = a < 1. There are many

choices for Æ(t). For example, Æ(t) may be (1 +
t)�l1(l1 > 1) or e�l2t(l2 > 0). � is given by

� = jjL(q)jjfc1jj d
dt
[L(q) _q1

r
]jj+ (c2 + c3jj _qjj)

jjL(q) _q1
r
jj+ c4 + c5g (14)

and the force term �c is de�ned as �c = �d�K�e�,
K� is a constant matrix of force control feedback
gains.

Theorem 1. : Consider the mechanical system de-
scribed by (6), using the control law (13), the
following holds for any (q(0); _q(0)) 2 
h:

(i). eq and _eq ! 0 as t!1;

(ii). e� is uniformly ultimately bounded and in-
versely proportional to the norm of the matrix
K� + I.

Proof: According to Property 4, and substituting
(13) into (6), the closed-loop dynamic equation is
obtained

DL _s = �LTKLs� s�2

jjsjj� + Æ
� � �CLs(15)

where � = DL�q
1
r
+CL _q

1
r
+GL + dL.

Consider the Lyapunov candidate function

V =
1

2
sTDLs (16)

Its time derivative along the trajectory of (15) is

_V =�sTLTKLs� sT � � jjsjj2�2

jjsjj�+ Æ

��sTLTKLs+ jjsjjjj�jj � jjsjj2�2

jjsjj� + Æ

��sTLTKLs+ jjsjj�� jjsjj2�2

jjsjj� + Æ

��sTLT
KLs+ Æ (17)

Integrating both sides of (17) gives

V (t)� V (0) =�
tZ

0

sTLTKLsds+

tZ
0

Æds



� a (18)

Thus, V is bounded, which implies that s 2 L
n�m
1 .

From (18), we have

tZ
0

sTLTKLsds � V (0)� V (t) + a (19)

Hence, s 2 L
n�m

2 can be obtained.

Since s = _eq1 + �1eq1 , it can be concludee
eq1 ; _eq1 2 L

n�m
1 .

Since eq1 ; _eq1 2 L1, it can be concluded that
q1(t); _q1(t); _q1

r
(t); �q1

r
(t) 2 L

n�m
1 and _q 2 L

n

1.

Therefore, all the signals on the right hand side of
(15) are bounded, _s and therefore �q1 are bounded.
Hence, s ! 0 as t ! 1. Therefore, eq1 !
0; _eq1 ! 0 as t!1. It follows that eq; _eq ! 0 as
t!1.

Substituting the control (13) into the reduced
order dynamic system model (6) yields

JT (�� �c) = �(q; _q; _q1; �q1; _q1
r
; �q1

r
) (20)

where � is a bounded function. Thus, JT e� =
(K� + I)�1�, and therefore the force tracking
error (f � fd) is bounded and can be adjusted by
changing the feedback gain K�. 2

3.2 Robust control of nonholonomic mechanical

systems

Consider the constrained dynamic equation (1)
together with m independent nonholonomic con-
straints (7).

Assumption 2. : The matrix RT (q)B(q) is of
full rank, which guarantees all n � m degrees of
freedom can be (independently) actuated.

The above assumption always holds for a large
class of nonholonomic mechanical systems such
as nonholonomic Caplygin systems (which include
a vertical wheel rolling without slipping on a
plane surface, a mobile wheeled robot moving on a
horizontal plane, and a knife edge moving in point
contact on a plane surface, etc.).

By appropriate selecting a set of (n � m) vector
of variables z(q) and _z(q), the control objective
can be speci�ed as: given a desired zd, _zd, and
desired constraint �d, determine a control law
such that for any (q(0); _q(0)) 2 
 then z(q); _q
and � asymptotically converge to a manifold 
d

speci�ed as


nhd = f(q; _q; �)jz(q) = zd; _q = R(q) _zd; � = �dg

Assumption 3. : The desired reference trajectory
zd(t) is assumed to be bounded and uniformly
continuous, and has bounded and uniformly con-
tinuous derivatives up to the second order. The
desired �d(t) is also assumed to be bounded and
uniformly continuous.

De�ning ez = z� zd, e� = ���d, _zr = _zd� �1ez
and s = _ez + �1ez, considering the control law as

B� = �KRs� Rzs�2

jjsjj�+ Æ
� JT�c (21)

where K is positive de�nite, Rz is the left inverse
of RT de�ned as Rz = R(RTR)�1, �c = �d �
K�e�, Æ(t) > 0 such that

R
t

0
Æ(!)d! = a <1 and

� is given by

� = jjR(q)jjfc1jj d
dt
[R(q) _zr ]jj+ (c2 + c3jj _qjj)

jjR(q) _zr jj+ c4 + c5g (22)

Theorem 2. : Consider the mechanical system de-
scribed by (11), using the control law (21), the
following holds for any (q(0); _q(0)) 2 
nh:

(i). ez and _ez ! 0 as t!1;

(ii). e� is uniformly ultimately bounded and in-
versely proportional to the norm of the matrix
K� + I.

Proof: The proof is similar to that of Theorem
1. 2

4. ADAPTIVE ROBUST CONTROL DESIGN

In developing control laws (13) and (21), ci; 1 �
i � 5 are supposed to be known. However, in
reality, these constants cannot be obtained easily.
Although any �xed large ci can guarantee good
performance, however, it is not recommended in
practice. Therefore, it is necessary to develop a
control law which does not require the knowledge
of ci; 1 � i � 5.

4.1 Adaptive robust control of holonomic mechanical

systems

Consider the control law as

B� = �KLs�
5X

i=1

L+sĉi�
2
i

jjsjj�i + Æi
� JT�c (23)

and the adaptation law as

_̂ci =��iĉi + 
i�
2
i
jjsjj2

�ijjsjj+ Æi
i = 1; : : : ; 5 (24)

where



�1 = jjL(q)jj:jj d
dt
[L(q) _q1

r
]jj (25)

�2 = jjL(q)jj:jjL(q) _q1r jj (26)

�3 = jjL(q)jj:jj _qjj:jjL(q) _q1r jj (27)

�4 =�5 = jjL(q)jj (28)

K is positive de�nite, L+ = L(LTL)�1, �c = �d�
K�e�, 
i > 0, Æi(t) > 0 and �i(t) > 0 such thatR
t

0
Æi(!)d! = ai <1 and

R
t

0
�i(!)d! = bi <1.

Theorem 3. : Consider the mechanical system de-
scribed by (6), using the control law (23) and
adaptation law (24), the following holds for any
(q(0); _q(0)) 2 
h:

(i). eq and _eq ! 0 as t!1;

(ii). e� is uniformly ultimately bounded and in-
versely proportional to the norm of the matrix
K� + I.

Proof: Consider the Lyapunov candidate function

V =
1

2
sTDLs+

5X
i=1

1

2
i
~c2
i

(29)

The proof is then similar to that of Theorem
1. Following the similar analysis as in Proof of
Theorem 1, it is easy to obtain that eq; _eq ! 0
as t!1, and the force tracking error (f � fd) is
bounded and inversely proportional to the norm
of the matrix K� + I. 2

4.2 Adaptive robust control for nonholonomic

mechanical systems

Consider the control law as

B� = �KRs�
7X

i=1

Rzsĉi�
2
i

jjsjj�i + Æi
� JT�c (30)

and the adaptation law as

_̂ci =��iĉi + 
i�
2
i
jjsjj2

�ijjsjj+ Æi
i = 1; : : : ; 7 (31)

where

�1 = jjR(q)jj:jj d
dt
[R(q) _zr ]jj (32)

�2 = jjR(q)jj:jjR(q) _zr jj (33)

�3 = jjR(q)jj:jj _qjj:jjR(q) _zr jj (34)

�4 =�5 = jjR(q)jj (35)

K is positive de�nite, Rz = R(RTR)�1, �c =
�d �K�e�, 
i > 0, Æi(t) > 0 and �i(t) > 0 such

that
R
t

0
Æi(!)d! = ai <1 and

R
t

0
�i(!)d! = bi <

1.

Theorem 4. : Consider the mechanical system de-
scribed by (11), using the control law (30) and
adaptation law (31), then the following holds for
any (q(0); _q(0)) 2 
nh:

(i). ez and _ez ! 0 as t!1;

(ii). e� is uniformly ultimately bounded and in-
versely proportional to the norm of the matrix
K� + I.

Proof: The proof is similar to that of Theorem
3. 2

5. SIMULATION RESULTS

A two-link robotic manipulator with a circular
path constraint is simulated to verify the proposed
controller. The constrained dynamic equation in
the form of (1) can be written as

�
D11 D12

D12 D22

� �
�q1
�q2

�
+

��C12 _q2 �C12( _q1 + _q2)
C12 _q1 0

�
�
_q1
_q2

�
+

�
G1

G2

�
=

�
�1

�2

�
+

�
f1

f2

�
+

�
d1

d2

�
(36)

where D11 = (m1 +m2)l
2
1 +m2l

2
2 +2m2l1l2cosq2,

D12 = m2l
2
2 + m2l1l2cosq2, D22 = m2l

2
2, C12 =

m2l1l2sinq2,G1 = (m1+m2l1gcosq1)+m2l2cos(q1+
q2), and G2 = m2l2gcos(q1 + q2). The constraint
is a circle in the work space (the (x; y) plane)
whose center coincides with axis of rotation of the
�rst link. The constraint, when expressed in terms
of joint space, is �(q) = l

2
1 + l

2
2 + 2l1l2cosq2 �

r
2 = 0, which has a unique constant solution for

q2 = cos�1[
r
2
�(l2

1
+l2

2
)

2l1l2
] = q

�
2 . Hence, the Jacobian

matrix is J(q) = [0 � 2l1l2sinq2] and the matrix
L(q1) = [1 0]T . For the convenience of simulation,
the nominal parameters of the robot system are
taken as m1 = 1Kg, m2 = 2Kg, l1 = l2 = 1m,
r =

p
2m, and g = 9:8m=s2, the initial conditions

are taken as q(0) = [1:0; 0]T , _q(0) = [0; 0]T ,
and the desired manifold 
hd is chosen as 
hd =
f(q; _q; �)jq1 = 0; _q = 0; � = 10g.
Using the controller (23) and adaptation law (24),
the control gain K and force control gain K� are
selected asK = diag(1; 1), K� = 1, and �1 is cho-
sen as �1 = 5. The adaptation gain in adaptation
law (24) is chosen as 
i = 0:5 and �i = Æi =

1
(1+t)2

.

The results of the simulation are shown in Figs. 1-
3. Fig. 1 shows the system responses, including q1,
q2, _q1 and _q2, of the simulated costrained robot.
Fig. 2 shows the force tacking error. It can be seen
that motion tracking error converges to zero as
desired and force tracking error is bounded. The
torques exerted at the constrained robot are given
by Fig. 3. It can be seen that all signals in closed-
loop are bounded. These results verify the validity
of the proposed algorithm.



6. CONCLUSION

In this paper, the problem of motion/force control
for both holonomic and nonholonomic mechanical
systems with uncertain dynamics is considered.
Both robust control algorithm and adaptive ro-
bust control algorithm have been designed to drive
the system motion converge to the desired mani-
fold and at the same time guarantee the bound-
edness of the force tracking error. The proposed
controllers are non-regressor based and require no
information on the system dynamics. Simulation
results have shown that the e�ectiveness of the
proposed controllers.
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