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Abstract. The paper develops a control procedure for a noisy near-Hamiltonian system.
The control task is to prevent the system from escape from a reference region bounded by
a lobe of the separatrix. Motion near the separatrix is presented as a sequence of
encirclements over the separatrix lobe between two consecutive vertices, and the problem
of avoiding escape through the separatrix is reduced to maximization of energy losses
during one encirclement. It is shown that the energy difference during an encirclement
can by approximated by the stochastic Melnikov integral. This allows extension of the
stochastic Melnikov method to optimal control problems. An approximate solution is
constructed as a time-invariant feedback, which is proved to be a nearly-optimal control
for the original nonstationary problem. Copyright  2002 IFAC.
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1. INTRODUCTION

The paper considers control against escape from a
reference region for a class of stochastic oscill atory
systems. The system is supposed to operate near a
boundary of the safe region, and weak perturbations
may result in escape from this domain. The control
goal is to avoid escape or to drive the escaped system
into the safe region.

The reference mode of operation for a near-
Hamiltonian system is usually associated with
oscill ation (libration) within the potential well , and
escape of this region is associated with the phase
transition due to overcoming the potential barrier. In
the phase plane, the reference region is bounded by a
lobe of the separatrix  of  the  generic  non-perturbed

Hamiltonian system. Investigation of near-separatrix
dynamics requires a special approach. Long before
and long after reaching the separatrix, motion can be
studied by the well -developed stochastic averaging
method (Kushner, 1990, Kovaleva, 1999). This
procedure fail s near the separatrix where the period
tends to infinity. Dunyak and Freidlin (1998)
proposed gluing conditions to match the averaged
equations in the inner and outer domains. However,
this approach does not consider separatrix-crossing
transitions.

The asymptotic method most commonly used for
analysis of near-separatrix motion is the Melnikov
method. The method has been developed for
deterministic systems with periodic (Melnikov,
1963) or quasi-periodic excitation (Wiggins, 1990),
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and then extended to systems with stochastic
perturbations (Gundlach, 1995, Simiu, 2002). In the
paper we present a nearly-optimal control procedure
based on this method.

This approach was used earlier for constructing
feedforward control against escape out of the
reference region (Frey, 1996, Simiu, 2002). The
control task was to suppress irregular escape due to
counteracting perturbations and decreasing the
effective excitation level. Implementation of the
feedforward control requires a quite complicated
scheme. This paper develops feedback control
scheme. The control goal is to maximize the
probabilit y of capture into the safe region.

The equations of motion and main cost criteria are
presented in Section 2. We define the probabilit y of
capture into the safe region and the probabilit y of
escape out of this region as performance measures of
the system and describe shortcomings of these
criteria from  the  computational  perspective.  These
shortcomings can be avoided by considering the
mean energy difference as a proper cost criterion. A
required value of the probabilit y of capture is
introduced as an additional constraint assigning
limiti ng control performance. Since we are
interested in the system’s behaviour in the vicinity of
the separatrix, we use the Melnikov method to obtain
asymptotic estimation. It is proved that the energy
difference is approximated (in the weak sense) by the
Melnikov integral M(τ), and maximization of the
performance criterion is reduced to minimization of
the expectation EM(τ) < 0. The inequalit y M(τ) < 0
implies that the system’s energy is insuff icient to
produce escape, and the probabilit y P0 =P{ M(τ) < 0}
can be interpreted as an asymptotic estimate of the
probabilit y of capture. In Section 3 we construct a
nearly-optimal control. We show that the asymptotic
solution leads to a time-independent feedback of a
simple structure. This control is proved to be nearly-
optimal for the original non-stationary problem. As
an example we consider the controlled Duff ing
equation. We find a nearly-optimal control and
evaluate limiti ng control performance guaranteeing
the necessary value of the capture probabilit y.

2  SETTING OF THE PROBLEM

In this section, we introduce cost criteria applicable
for the problem in question. For the sake of
simplicity, we study in detail a planar system with a
two-lobe separatrix; the restriction to R2 instead of
R2n is not essential and allows us to avoid some
technical detail s.

We will consider a near-Hamiltonian system in the
form

dt

dq =  p

                                                                      (1)

dt

dp = − V′(q) +  εf(t + τ , p,q,u)          

where V(q) is the potential, the derivative V′(q) =
dV/dq, τ is a phase shift of the external excitation
against initial conditions, 0 < ε << 1 is a small
parameter. The unperturbed subsystem (ε = 0)

dt

dq0  =  p0 ,  
dt

dp0  = − V′(q0)                            (2)

possesses the energy integral

H(p0,q0) = 
2

1
p0

2  + V(q0)                                (3)

Since (2) is autonomous, its solution is defined up to
an arbitrary phase shift and can be written in the
form p0 = p0(t−τ), q0 = q0(t−τ). A parameterization in
(1) is obtained by changing  t → t + τ, so that p0  =
p0 (t),  q0 = q0 (t). The coeff icient takes the form

 f(t + τ , p, q, u)  = g(p, q, u)  +  r(p, q)σξ(t + τ)     (4)

where control u should be found from optimalit y
conditions. Coeff icients g(p,q,u) and r(p,q) are
assumed to be suff iciently smooth for any admissible
control u = u(t,p,q)  taking values in a compact set U
⊂ R 1. Noise ξ(t) is a zero-mean uniformly bounded
in the mean square stationary process with unit
variance.

To specify the problem, we consider a system with a
bistable (two-well ) potential V(q) and a two-lobe
(homoclinic) separatrix. The threshold H = 0
corresponds to the separatrix, the energy in the
domains A− and A+ inside the separatrix lobes S− and
S+ is negative. The domains A− and A+ correspond to
oscill ations around each of the stable equili brium
(motion within a potential well ), the right domain A+

will be considered as a reference region. The outer
domain B beyond the separatrix corresponds to
motion overlapping both of stable positions (Fig. 1).

As in deterministic systems (Neishtadt, 1975, Cary
et al., 1986), dynamics in the ε-vicinity of the
separatrix is studied by breaking up the motion into
a sequence of steps. Each step is considered as an
encirclement between two consecutive vertices. Let
motion begin at the vertex a1  in the ε - vicinity of
the saddle point in the domain A+ (Fig.1). The
control task is to drive the system away from the
separatrix and “to deepen” it into the safe region
during an encirclement between two consecutive
vertices  a1  and  a2 . Note that the dotted and dashed



encirclement lines in Fig. 1 depict averaged orbits. A
real near-separatrix trajectory is a fast varying non-
smooth process (Wiggins, 1990, Simiu, 2002),

                                           p
       S −                                 B                         S +

                           A −              b                     A +

                                          a1       a2                                          q

                                   B

Fig. 1.  Scheme of near-separatrix motion

2.1. Performance indices of the system.

As shown in (Kifer, 1988), escape from the vicinity
of  the saddle point in a weakly perturbed systems
follows the deterministic scenario. A path becomes
“trapped” in a neighbourhood of  the saddle point,
and, as ε → 0, the mean escape time becomes
independent of noise. Hence, performance measures
based on the mean escape time criterion are not
informative for the problem in question.

From a physical point of view, the drift into the core
of the reference region corresponds to dissipation of
the full energy during an encirclement. In stochastic
systems, this condition is treated in a probabili stic
sense. Let H*  < 0, H**  < 0 be the energy levels
corresponding to the vertices a1 and a2 , respectively.
Then the probabilit y of capture into the safe region
A+ can be written in the form

Pc  = Pr{ H** − H*  <  0 ; H* ≤ 0}                   (5)

Let the orbit begin at the vertex b in the “bad”
region B, and the control task is to “capture” the
system into the safe region during one encirclement
between consecutive vertices b and a1 (Fig. 1). In
this case the capture probabilit y can be written as

Pc  = Pr{ H** < 0 ; H* ≥ 0}                              (6)

where H*  > 0, H**  < 0 are the energy levels
corresponding to the vertices b and a1 , respectively.

Strictly speaking, the perturbed system has a chaotic
near-separatrix layer of width d ~ Ο(ε) arising due to
crossings of stable and unstable manifolds of the
system (Wiggins, 1990). This implies that the
capture into the safe region can be considered if the
internal vertex lies not only inside the safe region
but also beyond the chaotic layer. Omitting detail s,

we investigate non-chaotic capture into the safe
region.

An opposite process of escape out of the potential
well i s associated with the probabilit y of escape

Pes  = Pr{ H** > 0; H* ≤ 0}                        (7)

where H* , H** are the energy levels corresponding
to the vertices a1  and b, respectively.
Maximization of  (5) or (6) as well as minimization
of (7) may be considered as a control task. However,
direct application of these criteria has computational
shortcomings associated, in particular, with their
great sensiti vity to the noise intensity. In this paper
we consider a simpli fied criterion of the mean
energy difference

J = E(H** − H*)                                             (8)

The drift into the core of the safe region may arise if
the mean energy difference J = E(H** − H*) < 0.
Furthermore, if J < 0,  minimization of criterion (8)
corresponds to the maximum deepening into the safe
region during an encirclement. This cost criterion is
more sensiti ve to the change of the drift than to
noise fluctuations, and the feedback control is
expected to be an effective tool for controlli ng the
system. The requisite level of the probabilit y of
capture can be interpreted as an additional
constraint.

2.2. Asymptotic analysis

Asymptotic analysis is based on the small parameter
expansions in the vicinity of the separatrix. From
(1), (3) we obtain the equation

=+=
dt

dq

q

H

dt

dp

p

H

dt

dH

∂
∂

∂
∂ εpf(t + τ,  p,q,u)       (9)

where u = u(t,p(t,τ),q(t,τ)).  To evaluate H in an ε-
vicinity of the separatrix, construct the expansions

H(t,τ, ε) = H0   + εh(t,τ ) + ε2 R(t,τ, ε)

p(t,τ,ε) = p0 (t) + ερ 1 (t,τ,ε)                             (10)

q(t,τ,ε) = q0 (t) + ερ 2(t,τ,ε)

Here H0 = H(p0(t),q0(t)) = 0 and p0(t), q0(t) is the
solution of the generic system (2) taken along the
separatrix. The first approximation h satisfies the
linear equation

dt

dh
= εp0(t)f

 u(t,τ)                                           (11)



where f u(t,τ) = f [t+τ, p0(t), q0(t), u(t,p0(t), q0(t))] for
any admissible control u.

If ε is small enough, expansions (10) converge
(weakly) for all t ∈ (−∞, ∞) (Kovaleva, 1998a,
2001). This result is interpreted as a stochastic
counterpart of asymptotic estimation for
deterministic systems (Sanders, 1982). Due to the
weak convergence H→h, control problems for (1),
(9) can be reduced to similar problems for the
approximating system (11); the requisite asymptotic
estimation can be obtained as in (Kushner, 1990,
Kovaleva, 1999). In general, control problems for
linear system (11) can be considered with standard
procedures. An effective asymptotic solution is based
on the Melnikov method

For motion in the ε −vicinity of the separatrix we let
H* = εh*, H** = εh** .  From (9),  we obtain

h** =  h* + η,    η  = ε −1 dH
C
∫                       (12)

integral is taken along the orbit C  between vertices
a1 and a2 . It was proved (Kovaleva, 1998a, 2001)
that

η  = M u (τ) + γ(ε),   h** =  h* + M u (τ) + γ(ε)    (13)

where

M u (τ) = dh
S+
∫  =

−∞

∞

∫ [p0 (t), f
 u (t,τ)]dt               (14)

is the Melnikov integral of (1) taken over the right
lobe of the separatrix (Wiggins, 1990), the residual
term γ(ε) ~ εlnε → 0, as ε → 0. Relationships (13)
are considered in the weak sense, that is

Pr{ h** − h* − M u (τ) ≥ γ(ε)} → 0,   ε → 0   (15)

This implies that condition (5) can be reduced to the
form

Pc = P0 + Pε

where Pε → 0 for ε → 0. The main term is written as

P0  = Pr{ M u (τ) < 0}                                      (16)

The control task is thus to maximize criterion (16)
independent of the precise positions of vertices a1, a2

or b.

If  an orbit starts at the saddle point corresponding to
h* = 0,  then h** = M u (τ) (terms of higher orders
are dropped out). In this case 16) can be considered
as the probabilit y of capture into the safe region.

 From (4), (11)  we obtain

M u (τ) = m + µ(τ)                                           (17)

where m  = EMu(τ)

m  =
−∞

∞

∫ p0(t)g0(t,u)dt                                     (18)

   g0(t,u) = g(p0(t), q0(t), u(t, p0(t), q0(t))

for any admissible control u, and

µ(τ) =
−∞

∞

∫ D(t)σξ(t+τ)dt

D(t) =  p0(t)r( p0(t),q0(t))                           (19)

It follows from (17), (18), (19) that Mu(τ) can be
interpreted as a stationary process with expectation
m and variance d calculated from (19). In case ξ(t) is
Gaussian, probabilit y (16) can be written in the
explicit form. As seen from the above, in the ε-
vicinity of the separatrix control u(t,p,q) only affects
the drift m. Hence, in the limit , as ε → 0, one can
replace minimization of criterion (8) with a simpler
minimization problem for expectation (18),
provided m  < 0.

The capture probabilit y may be limited by limiti ng
control performance. If a preassigned value of Pc (or
P0)  cannot be achieved only due to feedback control
u(t,p,q) with given constraints, control design has to
be changed, and feedforward or hybrid control
schemes can be employed.

3  ASYMPTOTIC SOLUTION OF OPTIMAL
CONTROL  PROBLEMS

We use an asymptotic approach for minimization
criterion (8). Since the drift into the core of the safe
region exists if

E(H** − H*)  = ε −1 E(h** − h*) < 0              (20)

the performance cost is written as

J(u) = E(h** − h*), u ∈ U : [u1, u2]              (21)

Optimal control uε  is thus defined as

J(uε ) = 
Uu∈

min J(u)                                            (22)

the inequalit y J(u) < 0 is not included in optimalit y
conditions and need to be verified.



Denote m = m(u). The weak convergence (15)
implies the condition

J(u) − m (u) → 0,   ε → 0                          (23)

for any admissible control u (Kovaleva, 1998a,
2001). Owing to this, one can reduce problem (22) to
a simpler problem of minimization expectation (18).
Let u0 (t)  be a control minimizing (18), that is

m(u0 ) = 
Uu∈

min m(u)

u0(t) =arg
Uu∈

min [p0(t)g(p0(t), q0(t), u)] =

(24)
= U0( p0(t), q0(t)

where arguments p0(t), q0(t) are calculated along the
right lobe of the separatrix S+ (Fig.1). One can prove
that (23), (24) yield the estimate (Kovaleva, 1999)

0 ≤  J(u0) − J(u ε )  ≤ µ(ε) → 0,  ε → 0            (25)

This implies that control (24) can be interpreted as a
nearly-optimal open-loop control (a programme) for
problem (22). An equivalent closed-loop control can
be written in the form

u∗ (p,q) = U0( p, q)                                         (26)

where U0  is defined by (24). As it follows from (18),
the programme(24) and the closed-loop control (24)
are equivalent in the ε-vicinity of the separatrix.
Hence, u∗(p,q) admits estimate similar to (25) when
substituted u0 → u∗. This implies that time-
independent feedback control u∗ (p,q) can be used as
a nearly-optimal control for the original non-
stationary problem.

Note that solutions (24), (26) have a simple physical
sense. These controls maximize the mean velocity of
the drift into the safe region at each moment t.

If M u(τ) is a Gaussian process, maximization of m is
equivalent to minimizatiom of the capture
probabilit y

3.1. Example

An example of the controlled Duff ing system is
intended only to be ill ustrative. We demonstrate the
connection between limiti ng control performance
and the probabilit y of capture.

Consider a standard Duff ing equation in the form

dt

dq
 =  p

(27)

dt

dp
  = − V′(q) +  ε[u  + σξ(t + τ)]

with the potential V(q) = q4 / 4 − q2 / 2   Let u ≤ N.
We obtain from (24), (26)

u∗(p,q) = − Nsign p,   u0(t) = −Nsign p0(t)       (28)

where p0(t ) = − (2)1/2 sinht/cosh2t  (Wiggins, 1990).

Define limiting control performance. Let ξ(t) be
Gaussian white noise with unit variance.  In this
case we  find from (18), (28)

m(u∗) = mN = − (2)3/ 2 N                                    (29)

Thus the maximum probabilit y of capture is
(Gardiner, 1990)

PN = 
2
1 [1 + Φ(−

d
mN )]                                   (30)

where Φ(z) is  the  Gauss probabilit y integral, the
variance d 2 =  4σ 

2/3.

Let the system be reliable if PN  >  0,972. This value
of PN  can be achieved if (Gardiner, 1990)

mN/d = 61/2N/σ ≥ 2,   N ≥ (2/3)1/2σ             (31)

If N < (2/3)1/2σ, the desired qualit y of the system
cannot be achieved. Condition (31) demonstrates the
direct connection between control constraints and
the requisite probabilit y of capture.

Let the control goal be to drive the system from the
outer domain B into the inner domain A+  during one
encirclement between the vertices b and a1 (Fig. 1).
Since h* > 0,  but Eh** = h* + m(u)  < 0,  the basin
of attraction is defined as

0 < h* < hA = − mN = (2)3/ 2N                         (32)

(terms of higher orders are neglected). If h* > hA,
then Eh** > 0, and the probabilit y of capture during
one encirclement becomes relatively small . It is easy
to find that Eh** > 0 if  N < N*  = h*/(2)3/2. This
allows estimation of limiti ng control performance in
the form N  > N* = h*/(2)3/2.

Other types of criteria associated with the change of
energy can be considered as for deterministic
systems (Kovaleva, 1998b).



4. CONCLUSIONS

We develop an asymptotic method for constructing a
nearly-optimal control against escape from a
potential well . Motion near the separatrix is
presented as a sequence of encirclements between
two consecutive vertices. This allows extention of
the stochastic Melnikov method to optimal control
problems. It is shown that the problem of avoiding
escape can be reduced to minimization of the mean
value of the Melnikov integral M(τ). The asymptotic
solution is constructed as time-independent
feedback, which is proved to be a nearly-optimal
control for the original nonstationary problem.

The perturbed system has a chaotic near-separatrix
layer of width d ~ Ο(ε). The chaos arises due to
crossings of stable and unstable manifolds of the
perturbed system (Wiggins, 1990). This implies that
the capture into the safe region can be considered if
the internal vertex lies within the safe region but
beyond the chaotic layer.

As  known, the system can escape from a region of
bounded oscill ations either to a domain of infinite
motion (rotation), or to another domain of oscill atory
or chaotic motions. The energetic approach explores,
in principle, non-chaotic motion. On the other hand,
the Melnikov integral M(τ) is a measure of a
distance between stable and unstable manifolds in a
perturbed system (Wiggins, 1990). If M(τ) has
simple zeros, the stable and unstable manifolds
intersects and the system exhibits irregular escape
associated with chaotic motion. This implies that the
probabilit y of capture P{ M(τ) < 0} is identical to the
probabilit y of non-occurrence of chaos. This allows
extension of  the results to the field of controlli ng
chaos.
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