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Abstract. The paper develops a control procedure for a noisy near-Hamiltonian system.
The mntrol task isto prevent the system from escape from a reference region bounded by
a lobe of the separatrix. Mation near the separatrix is presented as a sequence of
encirclements over the separatrix |obe between two conseadtive vertices, and the problem
of avoiding escape through the separatrix is reduced to maximization of energy losses
during one encirclement. It is $iown that the energy difference during an encirclement
can by approximated by the stochastic Menikov integral. This allows extension of the
stochastic Menikov method to gptimal control problems. An approximate solution is
constructed as a time-invariant feedback, which is proved to be a nearly-optimal control
for the original nonstationary problem. Copyright 0 20021FAC.
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1. INTRODUCTION

The paper considers control against escape from a
reference region for a classof stochastic oscill atory
systems. The system is supposed to qperate near a
boundary of the safe region, and weak perturbations
may result in escape from this domain. The ntrol
goal isto avoid escape or to drive the escaped system
into the safe region.

The reference mode of operation for a near-
Hamiltonian system is usually associated with
oscill ation (libration) within the potential well, and
escape of this region is asociated with the phase
transition due to overcoming the potential barrier. In
the phase plane, the referenceregion is bounded by a
lobe of the separatrix of the generic non-perturbed

Hamiltonian system. Investigation of near-separatrix
dynamics requires a spedal approach. Long before
and long after reaching the separatrix, motion can be
studied by the well-developed stochastic averaging
method (Kushner, 1990 Kovaleva, 1999. This
procedure fail s near the separatrix where the period
tends to infinity. Dunyak and Freidlin (1998
proposed duing conditions to match the averaged
equations in the inner and outer domains. However,
this approach does not consider separatrix-crossng
transitions.

The asymptotic method most commonly used for
analysis of near-separatrix motion is the Menikov
method. The method has been developed for
deterministic systems with periodic (Menikov,
1963 or quasi-periodic excitation (Wiggins, 1990,



and then extended to systems with stochastic
perturbations (Gundlach, 1995 Simiu, 2002. In the
paper we present a nearly-optimal control procedure
based on this method.

This approach was used earlier for constructing
feadforward control against escape out of the
reference region (Frey, 1996 Simiu, 2002. The
control task was to suppressirregular escape due to
counteracting perturbations and deaeasing the
effedive ecitation level. Implementation of the
feedforward control reguires a quite cmplicated
scheme. This paper develops feealback control
scheme. The @ntrol goal is to maximize the
probability of capture into the safe region.

The euations of motion and main cost criteria ae
presented in Sedion 2. We define the probability of
capture into the safe region and the probability of
escape out of this region as performance measures of
the system and describe shortcomings of these
criteriafrom the omputational perspedive. These
shortcomings can be avoided by considering the
mean energy difference as a proper cost criterion. A
required value of the probability of capture is
introduced as an additional constraint assgning
limiting control performance Since we are
interested in the system’ s behaviour in the vicinity of
the separatrix, we use the Me nikov method to oltain
asymptotic estimation. It is proved that the energy
differenceis approximated (in the weak sense) by the
Melnikov integral M(7), and maximization of the
performance citerion is reduced to minimization of
the expedation EM(1) < 0. The inequality M(1) < 0
implies that the system’s energy is insufficient to
produce ecape, and the probability Py =P{M(7) < 0}
can be interpreted as an asymptotic estimate of the
probability of capture. In Sedion 3 we @nstruct a
nearly-optimal control. We show that the asymptotic
solution leads to a time-independent feadback of a
simple structure. This control is proved to be nearly-
optimal for the original non-stationary problem. As
an example we onsder the ontrolled Duffing
equation. We find a nearly-optimal control and
evaluate limiting control performance guaranteéng
the necessary value of the @pture probahility.

2 SETTING OF THE PROBLEM

In this ®dion, we introduce ®st criteria gplicable
for the probem in question. For the sake of
simplicity, we study in detail a planar system with a
two-lobe separatrix; the restriction to R? instead of
R* is not esential and allows us to avoid some
technical details.

We will consider a near-Hamiltonian system in the
form

D
% =-V(a) + &t + 1, p,a,u)
where V(q) is the potential, the derivative V(q) =
dv/dg, T is a phase shift of the external excitation
againgt initial conditions, 0 < £ << 1 is a small
parameter. The unperturbed subsystem (¢ = 0)

d;.o = dﬁ ==V’
praill s B (%) 2

posesEes the energy integral

H(Pogk) = Py’ + V(30 3

Since (2) is autonomous, its lution is defined upto
an arbitrary phase shift and can be written in the
form po = po(t-1), 0o = Qo(t—T7). A parameterizetion in
(1) isobtained by changing t - t + 1, so that py =
Po (), Qo= (t). The wefficient takes the form

ft+7,p,q,U) =g, q,u) + r(p,Qdét+1 (4)

where mntrol u should be found from optimality
conditions. Coefficients g(p,q,u) and r(p,g) are
asumed to be sufficiently smoath for any admissble
control u =u(t,p,q) taking valuesin a compact set U
0 R™. Noise &(t) is a zro-mean uniformly bounded
in the mean square stationary process with unit
variance

To spedfy the problem, we mnsider a system with a
bistable (two-well) potential V(q) and a two-lobe
(homoclinic) separatrix. The threshold H = 0
corresponds to the separatrix, the energy in the
domains A-and A, inside the separatrix lobes S. and
S. isnegative. The domains A_and A, correspond to
oscill ations around each of the stable eguilibrium
(motion within a potential well), the right domain A.
will be mnsidered as a reference region. The outer
domain B beyond the separatrix corresponds to
motion overlapping bath of stable positions (Fig. 1).

As in deterministic systems (Neishtadt, 1975 Cary
et al., 1986, dynamics in the e-vicinity of the
separatrix is gudied by breaking up the motion into
a sequence of steps. Each step is considered as an
encirclement between two conseautive vertices. Let
motion begin at the vertex a; in the € - vicinity of
the sadde point in the domain A. (Fig.1). The
control task is to drive the system away from the
separatrix and “to degoen” it into the safe region
during an encirclement between two conseaitive
vertices a; and a,. Note that the dotted and dashed



encirclement linesin Fig. 1 depict averaged orhits. A
real near-separatrix trajedory is a fast varying non-
smoath process(Wiggins, 1990 Simiu, 2002,

Fig. 1. Scheme of near-separatrix motion

2.1. Performanceindices of the system.

As down in (Kifer, 1988, escape from the vicinity
of the sadde point in a weakly perturbed systems
follows the deterministic scenario. A path becomes
“trapped” in a neighbourhoaod of the sadde poaint,
and, as € - 0, the mean escape time bemmes
independent of noise. Hence performance measures
based on the mean escape time citerion are not
informative for the problem in question.

From a physical point of view, the drift into the re
of the reference region corresponds to disspation of
the full energy during an encirclement. In stochastic
systems, this condition is treated in a probabili stic
sense. Let H* < 0, H** < 0 be the energy levels
corresponding to the vertices a; and &, , respedively.
Then the probability of capture into the safe region
A, can be written in theform

P, = Pr{H* —H* < 0;H* <0} )

Let the orbit begin at the vertex b in the “bad’
region B, and the @ntrol task is to “capture’ the
system into the safe region during one encirclement
between conseautive vertices b and a; (Fig. 1). In
this case the @pture probability can be written as

P. =Pr{H** <0; H* = 0} (6)

where H* > 0, H* < 0 are the energy levels
corresponding to the verticesb and a; , respedively.

Strictly speaking, the perturbed system has a chaotic
near-separatrix layer of width d ~ O(¢) arising due to
crossngs of stable and unstable manifolds of the
system (Wiggins, 1990. This implies that the
capture into the safe region can be mnsidered if the
internal vertex lies not only inside the safe region
but also beyond the chaotic layer. Omitting detail s,

we investigate non-chaotic capture into the safe
region.

An opposite process of escape out of the potential
well i s associated with the probabilit y of escape

Pes = Pr{H** > 0; H* < O} (7

where H*, H** are the energy levels corresponding
totheverticesa; and b, respedively.

Maximizaion of (5) or (6) as well as minimizaion
of (7) may be mnsidered as a control task. However,
direa application of these aiteria has computational
shortcomings associated, in particular, with their
great senditivity to the noise intensity. In this paper
we onsider a smplified criterion of the mean
energy difference

J=E(H* —H¥) 6)

The drift into the are of the safe region may arise if
the mean energy difference J = E(H** - H*) < 0.
Furthermore, if J < 0, minimization of criterion (8)
corresponds to the maximum degpening into the safe
region during an encirclement. This cost criterion is
more sensitive to the cange of the drift than to
noise fluctuations, and the feealback control is
expeded to be an effedive tod for controlling the
system. The reguisite level of the probability of
capture @n be interpreted as an additiona
constraint.

2.2. Asymptotic andysis

Asymptotic analysis is based on the small parameter
expansions in the vicinity of the separatrix. From
(1), (3) we oltain the equation

dH _oH dp  oH dg
—=——+——=¢gpft+ 1, pgu 9
a0 dt | o dt pf( paw (9

where u = u(t,p(t,1),q(t,7)). To evaluate H in an &-
vicinity of the separatrix, construct the expansions

H(t,T, & =Ho + &h(t,7) + €R({,T, &)
p(t1 T,g) = pO (t) + 5/3 1 (t1 T,g) (10)
q(t,T,g) = qO (t) + ng(tirig)

Here Ho = H(po(t),o(t)) = 0 and po(t), go(t) is the
solution of the generic system (2) taken along the
separatrix. The first approximation h satisfies the
linear equation

dh

Pkl ) 11



where f“(t,7) = f [t+1, po(t), do(t), U(t,Po(t), qo(t))] for
any admisshble control u.

If € is gnal enough, expansions (10) converge
(weakly) for al t O (-, o) (Kovaleva, 1998,
2001). This result is interpreted as a stochastic
counterpart  of asymptotic  estimation  for
deterministic systems (Sanders, 1982. Due to the
weak convergence H - h, control problems for (1),
(9) can be reduced to similar problems for the
approximating system (11); the requisite asymptotic
estimation can be obtained as in (Kushner, 199Q
Kovaleva, 1999. In general, control problems for
linear system (11) can be mnsidered with standard
procedures. An effedive asymptotic solution is based
on the M nikov method

For motion in the & —vicinity of the separatrix we let
H* =¢h*, H** =¢h**. From (9), weohtain

h** = h*+pn, n=¢* IdH (12
C
integral is taken along the orbit C between vertices
a; and a, . It was proved (Kovaleva, 1998, 2001)
that
n =M"(1)+ e, h*™ = h*+M"(D)+ Ko (13

where

MY(1) = Idh = I [po (1), f* (t, D]t (19
S; —00

is the Melnikov integral of (1) taken over the right
lobe of the separatrix (Wiggins, 1990, the residual
term Y¢&) ~ ene - 0, as € — 0. Relationships (13)
are onsidered in the weak sense, that is

Pr{Ch* —h* -M“(0= e} - 0, £~ 0 (15

Thisimplies that condition (5) can be reduced to the
form

P.=Py+ P

whereP; - Ofor € » 0. Themain term iswritten as

Py =Pr{M"(7) < 0} (16
The mntrol task is thus to maximize aiterion (16)
independent of the predse positions of vertices ay, a,
or b.
If an orhit starts at the saddle point corresponding to
h* = 0, then h** = M"Y (1) (terms of higher orders

are dropped out). In this case 16) can be mnsidered
as the probabilit y of capture into the safe region.

From (4), (11) we oltain

M (1) = m+ (1) )

wherem = EM"(7)
m = [ Po(t)Golt,u)dt (18)

ob(t,u) = g(Po(t), do(t), u(t, Po(t), Ao(t))

for any admisshble eontrol u, and
M@= [ DOost+nat

D(t) = Po®r( Po(t).qo(t)) 19

It follows from (17), (18), (19) that M"(1) can be
interpreted as a stationary process with expedation
m and varianced calculated from (19). In case é(t) is
Gausdan, probability (16) can be written in the
explicit form. As e from the abow, in the &
vicinity of the separatrix control u(t,p,q) only affeds
the drift m. Hence in the limit, as ¢ — 0, one @n
replace minimizaion of criterion (8) with a smpler
minimization problem for expedation (18),
provided m <O.

The @pture probability may be limited by limiting
control performance If a preassgned value of P, (or
Py) cannot be achieved only due to feedback control
u(t,p,g) with given constraints, control design has to

be danged, and fealforward or hybrid control
schemes can be employed.

3 ASYMPTOTIC SOLUTION OF OPTIMAL
CONTROL PROBLEMS
We use an asymptotic approach for minimizaion
criterion (8). Sincethe drift into the are of the safe
region existsif
E(H* -H*) = E(h*™ -h*) <0 (20)
the performance @st iswritten as
Ju) =E(h** —h*), ud U : [ug, Uy 21
Optimal control u, isthus defined as
J(Ug) = min J(u) (22
uJ

the inequality J(u) < O is not included in optimality
conditi ons and need to ke verified.



Denote m = m(u). The weak convergence (15)
impli es the cndition

Ow-mwd-0, €-0 (23

for any admisshle ntrol u (Kovaleva, 1998,
2001). Owing to this, one @n reduceprobem (22) to
a simpler problem of minimization expedation (18).
Let up (t) beacontrol minimizing (18), that is

mM(Uo) = min m(u)
uty

Uo(t) =arg min [po(t)g(Po(t), dot), U)] =
uty

(24
= Uo( Pof(t), do(t)

where arguments py(t), go(t) are c@lculated along the
right lobe of the separatrix S, (Fig.1). One @n prove
that (23), (24) yidd the estimate (Kovaleva, 1999

0< Jg) —Jue) <suE) -0, -0 (25)

Thisimplies that control (24) can be interpreted as a
nearly-optimal open-logp control (a programme) for
problem (22). An equivalent closed-loop control can
be written in the form

Us(p,a) = Uo(p, 0) (26)

where Uy is defined by (24). Asit follows from (18),
the programme(24) and the dosed-logp control (24)
are guivalent in the e-vicinity of the separatrix.
Hence u-(p,q) admits estimate similar to (25) when
substituted Uy — Uugn This implies that time
independent feedback control us(p,q) can be used as
a nearly-optimal control for the original non-
stationary problem.

Note that solutions (24), (26) have a simple physical
sense. These @ntrols maximize the mean velocity of
the drift into the safe region at each moment t.

If M “(7) is a Gaussan process maximizaion of mis
equivalent to minimizatiom of the @pture
probability

3.1. Example
An example of the mntrolled Duffing system is
intended only to ke ill ustrative. We demonstrate the
connedion between limiting control performance

and the probability of capture.

Consider a standard Duffing equation in the form

— = p
(27
— =~VI(@) + fu +a(t+ 1)

with the potential V(q) = q*/4 - ¢?/2 Let luO< N.
We ohtain from (24), (26)

u{p,g) =—Nsignp, u(t) =-Nsignpo(t)  (28)
where po(t ) = - (2)¥? sinht/cosh?t (Wiggins, 1990).

Define limiting control performance. Let &(t) be

Gausdan white noise with unit variance In this
casewe find from (18), (28)
m(u) = my=-(2)¥*N (29

Thus the maximum probability of capture is
(Gardiner, 1990

Pu= [1+0(-%)] 30

where @(2) is the Gauss probability integral, the
varianced? = 40%3.

Let the system be reliable if Py > 0,972 This value
of Py can be achieved if (Gardiner, 1990

Omydd=6Y°Nlo= 2, N2 (2/3)Y%0 (31)

If N < (2/3)"?0, the desired quelity of the system
cannot be achieved. Condition (31) demonstrates the
dired connedion between control constraints and
the requisite probabilit y of capture.

Let the antrol goal be to drive the system from the
outer domain B into the inner domain A, during one
encirclement between the vertices b and a; (Fig. 1).
Sinceh* >0, but Eh** = h* + m(u) <0, thebasin
of attraction is defined as

O<h*<hy=—-my=(2%°N (32

(terms of higher orders are negleded). If h* > hy,
then Eh** > 0, and the probability of capture during
one encirclement beames relatively small. It is easy
to find that Eh** > 0 if N < N* = h*/(2)*2 This
allows estimation of limiti ng control performancein
theform N > N* = h*/(2)%2,

Other types of criteria associated with the cange of
energy can be nsidered as for deterministic
systems (Kovaleva, 1998)).



4. CONCLUSIONS

We develop an asymptotic method for constructing a
nearly-optimal control against escape from a
potential wel. Motion near the separatrix is
presented as a sequence of encirclements between
two conseautive vertices. This allows extention of
the stochastic Melnikov method to gptimal control
probems. It is $own that the problem of avoiding
escape @n be reduced to minimizaion of the mean
value of the Melnikov integral M(7). The asymptotic
solution is constructed as time-independent
feedback, which is proved to ke a nearly-optimal
contral for the original nonstationary problem.

The perturbed system has a chaotic near-separatrix
layer of width d ~ O(g). The caos arises due to
crossngs of stable and unstable manifolds of the
perturbed system (Wiggins, 1990. This implies that
the apture into the safe region can be mnsidered if
the internal vertex lies within the safe region but
beyond the dhaotic layer.

As known, the system can escape from a region of
bounded oscill ations ether to a domain of infinite
motion (rotation), or to another domain of oscill atory
or chaotic motions. The energetic approach explores,
in principle, non-chaotic motion. On the other hand,
the Menikov integra M(1) is a measure of a
distance between stable and unstable manifolds in a
perturbed system (Wiggins, 1990. If M(1) has
smple zeros, the stable and unstable manifolds
interseds and the system exhibits irregular escape
asciated with chaotic motion. Thisimplies that the
probability of capture P{M(7) < 0} isidentical to the
probability of non-occurrence of chaos. This all ows
extension of the results to the field of controlling
chaos.
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