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Abstract: The sequence of estimates formed by the LMS algorithm for a standard linear
regression estimation problem is considered. In this paper it is first shown that smoothing the
LMS estimates using a matrix updating will lead to smoothed estimates with optimal tracking
properties, also in the case the true parameters are slowly changing as a random walk. The
choice of smoothing matrix should be tailored to the properties of the random walk. Second,
it is shown that the same accuracy can be obtained also for a modified algorithm, SLAMS,
which is based on averages and requires much less computations.Copyright © 2002 IFAC
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1. INTRODUCTION

Tracking of time varying parameters is a basic prob-
lem in many applications, and there is a considerable
literature on this problem. See, among many refer-
ences, e.g. (Widrow and Stearns, 1985; Ljung and
Söderström, 1983; Ljung and Gunnarsson, 1990).

One of the most common methods is the least mean
squares algorithm, LMS, (Widrow and Stearns, 1985)
which is a simple gradient based stochastic approx-
imation (SA) algorithm. For time-invariant systems
LMS does not have optimal accuracy; the accuracy
could in fact be quite bad. It is well known that for
such systems, the recursive least squares (RLS) algo-
rithm is optimal, but it is on the other hand consider-
ably more complex. A very nice observation, indepen-
dently made by Polyak (1990) and Ruppert (1988), is
that this optimal accuracy can asymptotically also be
obtained by a simple averaging of the LMS-estimates.
See (Polyak and Juditsky, 1992; Kushner and Yang,
1993) for the analysis.

In (Ljung, 2001) it is shown that this asymptotic con-
vergence of the averaged LMS-algorithm to the RLS
algorithm is obtained also for the tracking case, with

a moving true system and constant gain algorithms.
This means that in general the averaged algorithm will
not give optimal accuracy. Optimal tracking proper-
ties then will be obtained by a Kalman-filter based
algorithm where the update direction is carefully tai-
lored to the regressor properties, the character of the
changes in the true parameter vector and the noise
level.

In this paper, a more general post-processing of
the LMS-estimates is considered, obtained from a
constant gain, unnormalized LMS-method. The gen-
eral version of this algorithm is called SLAMS —
Smoothed Averaged LMS (allowing a metathesis for
pronouncability). It consists of first forming the stan-
dard LMS-estimateŝθ (t), and then forming simple
averages of these

θ̃(t) =
1
m

t�1

∑
τ=t�m

θ̂ (τ +1) (1)

and finally smoothing these by a simple exponential
smoother, applying a direction correction everym:th
sample:
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θ̄ (t) =

8>>><
>>>:

θ̄ (t�m) � γS(θ̄ (t�m)� eθ(t));
t = km; k= 1;2; : : :

θ̄ (t�1) � γ(θ̄ (t�1)� θ̂(t�1));
t 6= km; k= 1;2; : : :

(2)

This algorithm has the design variablesµ (the gain
of the LMS algorithm),S;m andγ. By, for example,
choosingmas the dimension ofθ the average number
of operations per update in the SLAMS algorithm is
still proportional to dimθ , just as in the simple LMS
algorithm.

The main goal of this paper is to establish an asymp-
totic expression for the covariance matrix of the track-
ing error θ̄ (t)� θ (t) (θ (t) being the true parameter
value). It is shown that by the choice ofS andγ, the
same asymptotic covariance can be obtained as the
optimal Kalman filter gives, regardless ofm andµ (as
long as it has a certain size relation toγ).

In Section 2, the parameter tracking problem is formu-
lated and the basic assumptions are stated. A special
case of SLAMS is treated in Sections 3, withm fixed
to 1. The extension to the general algorithm is done in
Section 4.

2. PROBLEM STATEMENT AND BASIC
ASSUMPTIONS

Consider a discrete-time linear regression model with
time-varying parameters. It means that the observed
datafy(t);ϕ(t); t = 1; : : :g are generated by the linear
regression structure

y(t) = θ T(t)ϕ(t)+e(t) (3)

θ (t) = θ (t�1)+w(t) (4)

wheree(t) 2 R and w(t) 2 Rn stand for observation
error and parameter change respectively. Due to the
following assumptions, the equation (4) describes evo-
lution of slowly drifting parameterθ (t) 2 Rn as a
random walk.

Basic assumptions:

A1 The sequencesfe(t)g, fw(t)g and fϕ(t)g are
i.i.d. mutually independent sequences of random
variables.

A2 The observation errore(t) is unbiased and has a
finite variance, that isEe(t) = 0 andEe2(t) =
σ2

e 2 (0;∞).
A3 The parameter changew(t) is unbiased vari-

able with positive definite covariance matrix, i.e.
Ew(t) = 0 andEw(t)wT(t) = γ2Rw > 0, where a
priori knownγ > 0 represent small parameter of
the problem under consideration.

A4 The regressor covariance matrixEϕ(t)ϕT(t) =
Q is non-singular; moreover,Ejϕ(t)j4 < ∞.

A5 The initial parameter valueθ (0) is supposed to
be fixed (for the sake of simplicity).

Consider the parameter tracking problem with the per-
formance evaluated as the asymptotic mean square
error (MSE). That is, the problem is to design an es-
timation algorithm which on-line delivers an estimate
sequencefθ̄(t)g on the basis of past observations (3)
with a minimal asymptotic error covariance matrixU :

U = lim
t!∞

Ut (5)

where

Ut = E(θ̄ (t)�θ (t))(θ̄(t)�θ (t))T (6)

As is known (see, e.g. (Nazin and Yuditskii, 1991)
and the lower bound below), matrixU must be pro-
portional to the small parameterγ, that is

U = γU0+o(γ) as γ !+0 (7)

Moreover, from the lower bound for matrixU0 proved
in (Nazin and Yuditskii, 1991) follows, in particular,
that with Gaussian random variablese(t) andw(t)

U0 �Ulb for any parameter estimator; (8)

where Ulb is a symmetric solution to the equa-
tion UlbQUlb = σ2

eRw , that is

Ulb = σeQ
�1=2(Q1=2RwQ1=2)1=2Q�1=2 (9)

By matrix inequalityA� B is meant thatA�B is a
positive semidefinite matrix.

Let us further call the matrixU0 in (7) the limiting
asymptotic error covariance matrix, since

U0 = lim
γ!+0

γ�1U (10)

It is studied below how the matrixU0 depends on
the parameters both of the problem and the algorithm
described in the following section. This matrix is
then minimized over the design parameters in the
algorithm.

3. PARAMETER TRACKING BY SMOOTHED
LMS

Now, the aim is to study the following recursive con-
stant gain SA-like procedure, which is called SLMS,
(Smoothed LMS):

θ̂ (t) = θ̂ (t�1)+µϕ(t)(y(t)�ϕT(t)θ̂ (t�1)) (11)

θ̄ (t) = θ̄ (t�1)� γS(θ̄(t�1)� θ̂(t�1)) (12)

Hereµ > 0 is a scalar step size whileS represents an
n�n- matrix gain. The relation (11) is exactly the con-
stant (scalar) gain SA-algorithm (LMS), while recur-
sive procedure (12) generates a sequence of smoothed
SA estimates.

Special interest might be connected to the particular
case of a “scalar matrix”S when S= ρ In with a
scalar step sizeρ > 0 and identityn�n- matrix In (see
subsection 3.1 below). In that case there are no matrix
calculations in the algorithm (11), (12), which makes
it particularly simple.



Assumptions on the algorithm parameters:

B1 µ = o(1) asγ !+0.
B2 γ = o(µ) asγ !+0.
B3 The matrix(�S) is stable, i.e., the real part of

any eigenvalue ofS is positive.

Remark.Due to assumptions B1–B2, stochastic sta-
bility of equations (11), (12) (in mean-square sense)
is obviously ensured (for sufficiently smallγ). This
implies the existence of limit in (5).

Theorem 1.Let the assumptions A1–A5 and B1–B3
hold, and consider the estimates̄θ(t) generated by
the algorithm (11), (12). Then the limiting asymptotic
error covariance matrixU0, defined by (7), is the
solution to the equation

SU0+U0S
T = Rw+σ2

eSQ�1ST (13)

Remark.The relationship (13) is a Lyapunov equation
with respect toU0 , see, e.g. (Lancaster and Tismenet-
sky, 1985). Hence, if(�S) is stable then a unique
solutionU0 =U0(S) to (13) exists which is symmet-
ric and positive definite. Furthermore, the relationship
(13) might be considered as an algebraic Riccati equa-
tion with respect toS. Due to well known properties
of Riccati equation the following consequence holds
true.

Corollary. If the matrix gainS is subject to assump-
tion B3 then the solutionU0(S) to (13) has the follow-
ing lower bound

U0(S)�Umin = σeQ
�1=2(Q1=2RwQ1=2)1=2Q�1=2

(14)

which coincides withUlb (9) and is attained forS=
Sopt with

Sopt = σ�2
e UminQ

= σ�1
e Q�1=2(Q1=2RwQ1=2)1=2Q1=2 (15)

The corollary above is a special case of Lemma 5.1
in (Ljung and Glad, 2000). However, it can be easily
proved independently. Indeed, from (13) and an evi-
dent matrix inequality

(σ2
eSQ�1=2�U0Q

1=2)(σ2
eSQ�1=2�U0Q

1=2)T � 0
(16)

it directly follows thatU0QU0�σ2
eRw where equality

is attained for

σ2
eSQ�1=2 =U0Q1=2 (17)

Consequently (14) and (15) hold true.

Remark.Since bothUmin andQ are positive definite
matrices, then its productUminQ has only real positive
eigenvalues. Hence, the optimal matrix gainSopt (15)
meets the stability assumption above.

3.1 Scalar smoothing gain

Now consider the special case of “scalar matrix"
gain S = ρ In, ρ > 0. Then equation (13) im-
plies U0 =U0(ρ) with

U0(ρ) =
1
2

�
ρ�1Rw+ρσ2

eQ�1� (18)

Hence, the optimalρ in a sense of minimal trace TrU0
is as follows

ρopt = σ�1
e

�
TrRw

TrQ�1

�1=2

(19)

which ensures the following trace

TrU0(ρopt) =min
ρ>0

TrU0(ρ)

= σe(TrRw)
1=2�TrQ�1�1=2

(20)

This minimum trace cannot be less than TrUmin =
TrUlb. For the special case of linearly dependent ma-
tricesR�1

w andQ, that is

R�1
w = αQ for someα 2 R; (21)

the traces coincide, i.e.

TrU0(ρopt) = TrUlb (22)

which means that TrU0(ρ) attains its lower bound for
ρ = ρopt among all possible estimators (in a Gaus-
sian case). The condition (21) is both necessary and
sufficient for the equality (22). That follows directly
from the well known properties of the corresponding
Cauchy–Schwarz inequality for matrix traces (Lan-
caster and Tismenetsky, 1985), that is

�
TrABT

�2 ��
TrAAT

��
TrBBT

�
; with equality iff A and B are

linearly dependent. This Cauchy–Schwarz inequality
might be applied here forA = Q�1=2 and BT =
(Q1=2RwQ1=2)1=2Q�1=2. Finally, it follows from (19)
that under condition (21) the optimal “scalar matrix”
gainSopt (15) is reduced to

Sopt =
1

σe
p

α
In (23)

Remark.If the properties of the regressorsϕ(t) can be
chosen freely then it is possible to ensure the condition
(21), assuming parameter variationRw being known,
by an experiment design. Such a designed experiment
would thus give optimal parameter tracking with the
simplest algorithm.

3.2 Proof of Theorem 1

Below is the proof of even more general theorem
having its own interest. The generalization consists in
introducing non-singular matrix gainA into procedure
(11), that is

θ̂ (t) = θ̂ (t�1)+µAϕ(t)(y(t)�ϕT(t)θ̂ (t�1))
(24)



Hence, it will be proved that the matrixU0 (7) does
not depend onA. This result explains why only a scalar
step size is enough for the procedure (11), and that
matrixU0 can not be influenced by a matrix gainA in
(24).

Proof.Let the estimateŝθ (t) be generated by the more
general procedure (24), instead of (11). Let the matrix
gain A be non-singular and assume that(�AQ) is
stable. Denote the related estimation error covariance
matrix and its limit by

Vt = E(θ̂ (t)�θ (t))(θ̂(t)�θ (t))T

V = lim
t!∞

Vt
(25)

The limit equation (and asymptotics asγ !+0)

AQV+VQAT +O(µ)V

= µσ2
eAQAT +

γ2

µ
Rw(1+O(µ))

(26)

follows directly from well known previous results
(see, e.g. (Ljung and Gunnarsson, 1990)). Therefore,
due to assumptions B1, B2

kVk= O(µ) as γ !+0 (27)

which, together with (26), imply Lyapunov equation
(as γ !+0)

AQV+VQAT = µσ2
eAQAT +O(µ2)+o(γ) (28)

Here and further on matrix normkAk= �TrAAT
�1=2 is

used which corresponds to the inner producthA;Bi=
TrABT . Furthermore, for the cross covariance matrix

Rt = E(θ̂ (t)�θ (t))(θ̄(t)�θ (t))T (29)

it follows from (24), (12) and (3), (4) that

Rt = (In�µAQ)
�
Rt�1(In� γS)T

+γVt�1ST + γ2Rw
� (30)

In order to evaluate the limitR∞ = lim
t!∞

Rt by letting

t ! ∞, assumptions B1, B2 are taken into account,
from what follows

R∞ = γµ�1Q�1A�1VST +o(γ) (31)

In a similar manner, evaluation forUt (defined by (6))
andU (defined by (5)) follows:

Ut = (In� γS)Ut�1(In� γS)T + γ2Rw

+ γ2SVt�1ST + γ(In� γS)RT
t�1ST

+ γSRt�1(In� γS)T
(32)

and from (27), (31) as well as B1, B2 it follows that

SU+UST = γRw+RT
∞ST +SR∞+o(γ) (33)

Note that (33) is a Lyapunov equation with respect
to U entering linearly. Hence, due to (27) and (31),
kUk=O(γ) asγ !+0, and substitution (31) into (33)
gives

SU+UST = γRw+ γµ�1�SVA�TQ�1ST+

+SQ�1A�1VST�+o(γ)

= γRw+ γµ�1S(AQ)�1(AQV+

+VQAT)(AQ)�TST +o(γ) (34)

Finally, it follows from (28) that

SU+UST = γRw+ γσ2
eSQ�1A�1(AQAT +

+O(µ))A�TQ�1ST +o(γ)
= γRw+ γσ2

eSQ�1ST +o(γ) (35)

Therefore, the limit matrixU0 defined by (7) meet the
equation (13) and does not depend onA. Theorem 1 is
proved. 2

4. SLAMS: A MORE GENERAL ALGORITHM

Let us consider the following modification of the
parameter tracking algorithm (11), (12). It contains a
natural numbermas a parameter.

θ̂ (t) = θ̂ (t�1)+

+µϕ(t)(y(t)�ϕT(t)θ̂ (t�1)) (36a)

eθ (t) = 1
m

t�1

∑
τ=t�m

θ̂(τ) (36b)

θ̄ (t) =

8>>><
>>>:

θ̄ (t�m)� γS(θ̄(t�m)� eθ(t));
t = km; k= 1;2; : : :

θ̄ (t�1)� γ(θ̄(t�1)� θ̂(t�1));
t 6= km; k= 1;2; : : :

(36c)

Since it is a Smoothing algorithm based on the Aver-
aged estimates from the LMS procedure, it is called
SLAMS. Evidently, this algorithm coincides with
(11), (12), whenm= 1. However, whenm> 1, the
procedure (36a) – (36c) takes less arithmetic calcula-
tions per time unit (in a multi-variate case) than (11),
(12). Moreover, it turns out that the procedure (36a)
– (36c) can ensure the same asymptotic MSE as (11),
(12).

Theorem 2.Assume that the assumptions A1–A5 and
B1–B3 hold, and consider the estimatesθ̄ (t) gener-
ated by the algorithm (36a) – (36c). Then for any fixed
natural numberm the asymptotic error covariance ma-
trix

U (m) = lim
t!∞

E(θ̄ (t)�θ (t))(θ̄(t)�θ (t))T (37)

is the solution to the equation

SU(m)+U (m)ST = γ
�

mRw+
σ2

e

m
SQ�1ST

�
+o(γ) as γ !+0

(38)

Hence, the lower boundU (m)
lb

to the limiting asymp-
totic error covariance matrix

U (m)
0

= lim
γ!+0

γ�1U (m) (39)



coincides withUlb =Umin (see (9), (14)), that is

U (m)
0

(S)�U (m)
lb

(40)

= σeQ
�1=2(Q1=2RwQ1=2)1=2Q�1=2

Therefore, the lower bound toU (m)
0

does not depend

onmand is attained forS= S(m)opt with

S(m)opt =mσ�2
e U (m)

lb
Q (41)

=mσ�1
e Q�1=2(Q1=2RwQ1=2)1=2Q1=2

The proof of Theorem 2 is analogous to that of The-
orem 1. Note that a comparison of the equation (38)
with (35) shows that the modification of the tracking
algorithm suggested above corresponds to a simulta-
neousm-times increase in the drift covariance matrix
Rw andm-times decrease in the variance of observa-
tion errorσ2

e in the right hand side of Lyapunov equa-
tions (13), (35). Since the optimal gain matrix (41) is
balanced the influence of correspondent summands in
the right hand side (38), this explains that the lower
bounds (14) and (40) coincide.

4.1 Proof of Theorem 2

Introduce the estimation errors

δ̂ (t) = θ̂ (t)�θ (t) (42)eδ (t) = eθ (t)�θ (t) (43)

δ̄ (t) = θ̄ (t)�θ (t) (44)

As to δ̂ (t), the relations from the proof of Theorem 1
can be used. Particularly, relations (25), (27) imply
Ekδ̂ (t)k2 = O(µ). Consequently

Ekeδ (t)k2 = O(µ) (45)

Consider a subsequence of time instantst = km, k=
1;2; : : : and first prove the Theorem for the partial
limit

U (m) = lim
k!∞

E(θ̄(km)�θ (km))(θ̄ (km)�θ (km))T

(46)

The estimation error̄δ (t) for t = km is recursively
represented as

δ̄ (t) = (In� γS)δ̄(t�m)+ γSeδ(t)
� (In� γS)

t�1

∑
τ=t�m

w(τ)
(47)

Note that the first and the last summands in the r.h.s.
of (47) are uncorrelated. Furthermore, the correlation
between the second and the last summands is evalu-
ated asO(γ2µ1=2) = o(γ2), since by Cauchy–Schwarz
inequality

kEeδ (t)wT(τ)k � (Ekeδ (t)k2)1=2(Ekw(τ)k2)1=2

�!
k!∞

O(µ1=2γ) = o(γ) (48)

Hence, the covariance matrix (46) meets the equation

SU(m)+U (m)ST +O(γ)U (m)

= γmRw+(eRT
mST +SeRm)(1+O(γ))+o(γ)

(49)

where

eRm= lim
k!∞

Eeδ (km)δ̄ T(km�m) (50)

Some calculations (see (Nazin and Ljung, to appear))
prove that

eRm = lim
k!∞

Eeδ (km)δ̄ T(km)+o(γ)

=
γ

2m
σ2

eQ�1ST +o(γ)
(51)

Substitution (51) into (49) leads to (38) for the partial
limit considered.

Now, consider subsequence of time instantst = km+
1, k = 1;2; : : : ; then the simplier recursive-like equa-
tion for the estimation error̄δ (t) holds true, that is

δ̄ (t) = (1� γ)δ̄(t�1)+ γδ̂(t�1)�w(t) ; (52)

from which follows that

lim
k!∞

Eδ̄ (km+1)δ̄ T(km+1) =U (m)+O(γ2) (53)

with U (m) as defined by (46); hence, the partial limit
(53) also meet the equation (38).

Consequently, by this finite induction,

lim
k!∞

Eδ̄ (km+s)δ̄ T(km+s) =U (m)+O(γ2) ;

s= 1;2; : : : ;m�1

whereU (m) is defined by (46). This proves the equa-
tion (38) for any partial limits of the matrix sequence
fU(t)g.

The rest of the Theorem is proved in completely the
same manner as that in the proof of Theorem 1. This
completes the proof. 2

5. CONCLUSION

From the obtained results it follows that the optimal
limiting asymptotic error covariance matrixUmin (14)
for the SLAMS algorithm (36) coincides with the
lower boundUlb (9). Thus, Theorem 1 and the lower
bound (9) imply that under Gaussian distributions of
e(t) and w(t) the algorithm (11), (12) with optimal
matrix gainS= Sopt (15) delivers asymptotically op-
timal estimates among all possible estimators.

An interesting theoretic aspect of this is that it is
possible to achieve asymptotically optimal accuracy
with an algorithm that is considerably simpler that
the optimal Kalman-filter based algorithm. This might
also prove useful in certain practical applications.



It might be seen as a paradox that the result is in-
dependent of the integerm, which also governs the
algorithm complexity. One should bear in mind that
the result is asymptotic inγ !+0. For fixed, non-zero
γ > 0, there will be an upper limit ofm for which the
limit expression is a good approximation of the true
covariance matrix.
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