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Abstract: The purpose of this paper is to show that a distributed-parameter model of a
continuous ball mill can be developed by discretizing the particle size continuum into a
few size intervals only. Despite this coarse discretization of the particle size distribution,
the ball mill model provides a good representation of the real process, which can be
combined with a classifier model to build a complete simulator of a closed-loop grinding
circuit. This simplified process representation is compared with a detailed first-principle
model previously developed and validated by the authors. The main advantage of the
simplified model is that it can be easily incorporated in an on-line control scheme. For
illustrative purposes, a NMPC scheme is implemented to regulate the product fineness
when variations in the grindability of the raw material occur as a measurable disturbance.
The control objective, based on a size interval content, is compatible with traditional
fineness measurements. Copyright © 2002 IFAC
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1. INTRODUCTION

Clinker and raw material grinding is a fundamental
step in cement manufacturing. This highly energy-
consuming operation is usually performed in closed-
loop grinding circuits, including a ball mill and an air
classifier.

Modeling of industrial grinding circuits is a delicate
task due to the lack of reliable measurements of
some key variables, such as material hold-up and
particle size distribution inside the mill, which are
function of space and time (Austin, et al., 1984).

In previous studies (Boulvin, et al., 1999; Boulvin,
2000), the authors have developed and validated a
first-principle model of a closed-loop grinding circuit
of the cement manufacturer CBR (Belgium). This
first-principle model, which consists of sets of partial
differential equations (PDEs) and algebraic equations
(AEs), can be used as a tool to investigate process
dynamics, to study the effect of changes in material
properties, and to test control schemes.

Even though this approach has proved quite
successful, the resulting model is too complex in
nature to allow model-based control to be readily
implemented. As a next step, it is therefore required
to develop simplified models and, in (Lepore, et al.,
2001), a reduced-order model is proposed for a
laboratory-scale fed-batch process.

The objective of the present study is twofold:

• to extend the results presented in (Lepore, et al.,
2001) to a full-scale closed-loop grinding circuit.
This objective involves the development of a
low-order distributed-parameter model for a
continuous ball mill, which would allow the
description of the particle size distribution along
the mill axis, the estimation of the unknown
model parameters, and the validation of this
model with respect to the previously developed,
more complex, first-principle model.

• to design a nonlinear predictive control (NMPC)
based on the low-order distributed-parameter
model.
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Recently, several black-box approaches to the
control of cement grinding circuits have been
published; see (Van Breusegem, et al., 1996; Magni,
et al., 1999). The main advantage of our modeling
approach is that it enables the description of the
particle size distribution inside the grinding circuit,
whereas black-box approaches often refer to some
global variables only (such as the material flow rates
or the total mass content of the mill).

The present paper is organised as follows. Section 2
describes the closed-loop grinding process and
presents the classical modeling approach developed
in (Boulvin, 2000). In Section 3, a new model
structure and parametrization are proposed. In
Section 4, a simulation study shows how the
unknown model parameters can be estimated by
minimising a maximum-likelihood criterion and
demonstrates the good agreement with the more
complex, first-principle model. Section 5 is devoted
to NMPC. Finally, Section 6 presents some
concluding remarks.

2. PROCESS DESCRIPTION

The cement grinding circuit represented in figure 1
consists of a single-compartment ball mill in closed-
loop with an air classifier. The raw material flow qC

is fed to the rotating mill, where steel balls perform
the breakage of the material particles by fracture
and/or attrition. At the other end, the mill flow qM is
lifted up by a bucket elevator to the classifier which
separates the material into two parts: the product
flow qP and the retail flow qR, which is recirculated
to the mill inlet. The selectivity of the classifier, and
in turn the product fineness, can be modified by
acting on registers Rp. The sum of qC and qR is the
total feed flow, denoted by qF.

Fig. 1. Closed-loop grinding circuit

Based on the pioneering works of Mika (1971) and
Austin (1984), the first-principle model developed in
(Boulvin, et al., 1999; Boulvin, 2000) considers the
size continuum as divided in N size intervals
(numbered from 1 to N towards the lowest sizes,
typically N is between 15 and 30) and consists of a
set of partial differential equations describing the
mass balances for each size interval:
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where H(x,t) is the material content per unit of length
(hold-up) and wi(x,t) is the weight fraction of
material in size interval i. The last two terms are
concerned with the fragmentation phenomena: the
parameter si is the specific rate of breakage for size
interval i and the parameters bij describe the primary
breakage distribution from size interval j. The
transport phenomena are expressed by the first two
terms: ui and Di are the convection velocity and the
diffusion coefficient for size interval i, respectively.

These PDEs are supplemented with appropriate
initial and boundary conditions:
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where H0(x) is the initial hold-up and w0;i(x) the
initial weight fraction of material in size interval i, L
is the length of the mill;
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where qF(t) and wF;i are the flow rate and the weight
fraction in size interval i of the total feed,
respectively. εi is the classifying effect of the grate
discharge and is normally equal to 1.
The effect of the hold-up, which diminishes the
efficiency of the grinding process, introduces a
strong nonlinearity in the model through the specific
rates of breakage si.
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Fig. 2. Separation curves of the classifier

The separation curves of the classifier (see figure 2)
can be described by models introduced in (Zhang,
1992). Experimental correlations allow the effect of
several variables on the separation curve to be
modeled, e.g. the register position or the input flow
rate to the classifier (Boulvin, 2000).

In the sequel, the full model is used as an appropriate
representation of the closed-loop grinding circuit. It
serves as a reference and provides the simulation data
used for parameter estimation in Section 4. It also
allows the NMPC scheme developed in Section 5 to
be tested in realistic scenarii.
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3. NEW MODEL FORMULATION

The idea underlying the development of a low-order
model is that it is possible to describe the dynamic
behavior of the ball mill by monitoring the evolution
of the particle distribution between a few size
intervals, say three size intervals. This is in contrast
with the commonly accepted idea that a large number
of size intervals (typically in a geometric progression
1/ 2 , see (Austin, 1984)) is necessary to discretize
the size continuum and to derive adequate models.
Here two intermediate size limits define three size
intervals within the size continuum, numbered 1, 2
and 3 for coarse, medium and fine particles,
respectively. To represent the fragmentation
phenomena, we consider that the coarse particles
break at rate α1, yielding a mass fraction k of
medium particles and a mass fraction (1-k) of fine
particles. The medium particles break entirely into
fine particles at rate α2. On the other hand, the
transport of particles in each size interval is
expressed by means of the convection and diffusion
terms considered in previous studies (Boulvin, 2000;
Mika, 1971).

The previous considerations lead to the following
system of partial differential equations:
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where:
- X i is the mass per unit of length in size

interval i;
- k is the yield coeff icient and ϕi is the

breakage rate for material in size interval i;
- ui is the convection velocity and Di is the

diffusion coefficient for size interval i .

These equations are supplemented by initial and
boundary conditions:
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where H0(x) is the initial hold-up and w0;i(x) is the
initial mass fraction for size interval i;
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where qF;i(t) is the total feed flow rate for size
interval i .

By analogy with the description of reaction kinetics
in biochemical systems  (Bogaerts and Hanus, 2000),
the breakage rates ϕi are assumed to be first-order
laws modified by exponential factors representing
various inhibition effects. In cement grinding, the
ventilation of the mill is generally sufficient to avoid

the slowing-down effect caused by the accumulation
of very fine particles in the mill , so that only the
inhibition effect of the material hold-up is taken into
account. Hence, the breakage rates can be formulated
as follows:

2,1ieX H
iii =α=ϕ β− (7)

where:
- αi is the specific rate of breakage for size

interval i;
- β is the coeff icient for the hold-up effect;
- H is the hold-up, that is (X1+ X2+ X3).

This way, the breakage mechanism can be interpreted
as a “chemical reaction” with an associated
“kinetics” .

On the other hand, the complex separation
mechanism (“ fish-hook” curve of the classifier) is
represented by Zhang’s equations and the
correlations mentioned in Section 2 (Zhang, 1992;
Boulvin, 2000). These equations are based on the
assumption that the size continuum is subdivided in a
relatively large number of size intervals (N~15-30).

It is therefore necessary to ensure the compatibili ty
of the two model components (the ball mill and the
air classifier) despite the fact that they are based on
different numbers of size intervals. Numerous
simulation and experimental considerations have led
us to the assumption that the material at the mill
outlet can be described with reasonable
approximation by the following Rosin-Rammler law
(Austin, 1984):
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where R(z) is the weight fraction oversize, the
parameters z0 and n represent the location and the
dispersion of the distribution, respectively. Since
these two unknown parameters can be uniquely
determined with two weight fractions, the mill output
distribution - as reproduced by the low-order mill
model - can be used to reconstruct a complete size
distribution compatible with the classifier model.
The resulting model of the closed-loop grinding
circuit, which is given by relations (4-8) is much
simpler and the purpose of the next section is to
demonstrate the agreement of this simplified model
with the complex, first-principle model detailed in
Section 2, based on a set of particular experiments.

4. PARAMETER ESTIMATION

The parameter vector θ to be estimated is composed
of the parameters k, α1, α2, β, u and D (here the
transport does not depend on the particle size). The
three size intervals are defined by the two
intermediate size limits 0.150 and 0.016 mm. The
mass content per unit of length in each size interval is
measured at discrete times ti and at regularly
distributed points xj along the mill axis, yielding the
measurement vector Y ij. These measurements
correspond to the so-called “crash-test” procedure



used in the cement industry, in which the ball mill is
halted at regular intervals in order to take cement
samples at several locations in the mill . The errors on
the measurement Y ij are supposed to be normally
distributed white noises with zero mean and variance
matrix Q = σ2I (the errors on each component are
uncorrelated, so independent because of the
normali ty assumption, of equal variance σ2 and I is
the 3-by-3 identity matrix). The parameter vector θ is
estimated using the maximum-li kelihood criterion,
i.e., the minimization of the cost function JML(θ):
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compared to the mean value on all the measurements
Y ij provides a better estimation of the agreement
between measured and predicted values than the cost
function.
The lower bound on the parameter covariance matrix





 θ−θθ−θ T)ˆ)(ˆ(E , given by the inverse of the Fisher

information matrix, can be estimated in the following
way (Walter and Pronzato, 1997):
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The minimization of (9) is performed using the
“Optimization Toolbox 2.0” from MATLAB 5.3.
The solution of the partial differential equations is
achieved using (a) a “method of lines” Matlab
procedure for spatial differentiation (Stengle, et al.,
2000) (b) standard solvers from MATLAB 5.3. for
the integration in time of the differential equations.

Experiment 1, used for parameter estimation and
direct validation, is designed as follows:

- the grinding circuit is initiall y in steady state
with 23 tons/h of raw material flow rate and
register position of 75;

- a step from 75 to 20 is performed on the
register position;

- after 40 minutes, a step is performed on the
raw material flow rate from 23 to 29 tons/h.

Table 1 Parameter vector: estimates (row 1) and
standard deviations (row 2)

k α1 α2 u D β

0.875 0.894 0.115 1.012 2.414 0.784
0.005 0.008 0.002 0.001 0.021 0.013

Figure 3 shows the spatiotemporal evolution of the
variables X i and the hold-up in the mill during 80
minutes. It can be noticed that:

• relevant information about the transport
phenomena is available thanks to the evolution
of the variables along the mill

• the nonlinear effects should be emphasized by
the drastic hold-up changes following the steps
in t = 0 and t = 40 min.

The estimated values of the parameters are reported
in table 1 and figure 4 displays how the predicted
values fit the experimental data in a very satisfactory
way. This good agreement is also confirmed by the
value of R equal to 0.0027 tons/m (compared to the
mean value of the Y ij equal to 0.201 tons/m).

Experiment 2, consisting in the initial loading of the
mill followed by a supplementary increase of the
recirculation, is used for cross-validation (see figure
5). The experiment is designed in order to exhibit a
nonlinear behavior in a very drastic way. The
experimental and simulation results are compared in
figure 6. The numerical value of R equal to 0.0117
tons/m (compared to the mean value of the Y ij equal
to 0.237 tons/m) demonstrates how satisfactorily the
low-order model reproduces (or predicts) the outputs
of the real system (i.e., our reference simulator
described in Section 2).

The standard deviations of the parameter estimates,
computed with a constant standard deviation of the
measurement errors σ = 0.002 tons/m, are very
satisfactory (see table 1).

The correlation coeff icients, which are reported in
table 2, exhibit globally low values, so that
confidence intervals can be reliably obtained from
the individual standard deviations. However, it must
be observed that there exist:

• a strong correlation between the yield
coeff icient k and the specific breakage rate α2;

• a strong correlation between each specific
breakage αi and the hold-up coefficient β.

Fig. 3. Experiment 1: space and time evolution of the
variables X i and of the hold-up H
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Fig. 4. Experiment 1: direct validation (solid: X1,
dashed: X2, dotted: X3, * : experimental values)

Fig. 5. Experiment 2: space and time evolution of the
variables X i and of the hold-up H

Table 2 Correlation coeff icients

k α1 α2 u D

α1 +0.35 -- -- -- --
α2 +0.83 +0.73 -- -- --
u +0.12 -0.01 +0.13 -- --
D +0.61 -0.02 +0.40 +0.49 --
β +0.51 +0.89 +0.90 +0.13 +0.14
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Fig. 6. Experiment 2: cross-validation (solid: X1,
dashed: X2, dotted: X3, * : experimental values)

These abnormal correlation values could be
diminished by designing appropriate experiments in
which:

• appearance of medium-size particles
(breakage of coarse particles) and
disappearance of these particles (due to
breakage) are not simultaneous;

• hold-up could be maintained constant despite
the fact that the recirculation is very sensitive
to the changes in the particle distribution.

Such experiments are almost impossible to achieve in
practice and an in-depth analysis should probably
include a mix of experiments, e.g., crash-tests,
tracers,… combined with appropriate experiment
design. Such aspects, which are beyond the scope of
this study, are already tackled by the authors.
The purpose of the next section is to show how the
simplified model can be used in a model-based
control scheme, such as nonlinear predictive control.

5. PREDICTIVE CONTROL

Nowadays, in most industries, the material fed to the
grinding circuit can be stored in several sites (not
completely closed buildings, outdoor stockpiles) and
hence subject to different atmospheric conditions.
This storage policy leads to some variations in the
material physical characteristics, e.g., its grindabili ty.
If the operators wish to control the fineness of the
product, a typical control strategy could be (a) to
obtain a prior measurement of the grindabili ty
change, e.g., by laboratory-scale grinding tests (b) to
implement a control of the fineness taking into
account the foreseeable evolution of that disturbance.
A nonlinear model predictive control (NMPC), using
the simplified model presented in section 3, appears
to be well suited to achieve this strategy. Since the
Blaine of the product (specific surface commonly
adopted as a measurement of the fineness in
industrial practice) cannot be computed with a few
size intervals only, the percentage of material in a
specific size interval constitutes an alternative
fineness objective.

NMPC, in accordance with the classical formulation,
consists in determining a set of manipulated-variable
moves over a control horizon of Nu sampling periods
which minimizes an objective function J over a
prediction horizon of Nh sampling periods. The
register position (Rp) and the weight fraction of the
fine particles in the product are selected as the
manipulated and the controlled variables,
respectively. The objective function is expressed as
an output-error least-square criterion measuring the
deviation of the predicted values from the set point.
This criterion is subject to bound constraints on the
register position, i.e. 0 ≤ Rp ≤ 100.

The effect of modeling errors is treated as an
additive, unmeasured disturbance in a way similar to
DMC. The process state vector is supposed available



at each sample time (in practice, a state observer
should be designed). The disturbance is estimated by
dk = xmeasured;k - xmodel;k (tk being the sample time).
The NMPC program is implemented using the
“Optimization Toolbox 2.0” and standard solvers
from MATLAB 5.3.
The manipulated variable is constituted of one move
over the entire horizon (Nu=1). The selected values
of the sampling period Ts and the horizon are
respectively 10 min and 50 min (Nh=5), that is, about
0.5 and 2 times the time constant of the circuit.

Consider the following process set point:
- feed flow rate = 25 tons/h, Rp = 37
- weight fraction of the fine particles in the

product = 0.774, spec. surface = 5050 cm2/g
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Fig. 7. Predictive control results

A decrease of 15 % in the grindabili ty of the raw
material occurs after 60 min.
Figure 7 shows the temporal evolution of the weight
fraction, the mill flow rate and the register position.
NMPC induces no instabili ty and the steady state is
reached within reasonable time limits (80 minutes).
On the other hand, the evolution of the Blaine
specific surface shows that a control of the particle
content in the fine-size interval could be sufficient to
guarantee the fineness of the product. This latter
observation allows further investigations to be
achieved in order to more thoroughly evaluate the
potentials of this control policy.

6. CONCLUSION

In this study, a low-order model for a ball mill ,
which describes mass balances between a reduced
number of size intervals, is introduced. Combined
with Zhang’s relations for the classifier, it provides a
simplified representation of a cement closed-loop
grinding circuit. The parameters of the ball mill are
estimated using “crash-test” simulation data from a
previously developed, complex model. The
validation procedures as well as the standard
deviations on the estimates demonstrate the
reliabili ty of the identified model. The correlations
between the parameters also suggest an in-depth
analysis of experiment design using new techniques

(e.g., tracers). To ill ustrate the potentials of the new
model formulation, a nonlinear model predictive
control (NMPC) scheme is designed to control the
cement fineness when measurable grindabili ty
changes occur in the feed material. The fineness
control objective - defined by means of a single size
interval - is compatible with traditional fineness
objectives defined in terms of Blaine specific surface
to be fulfill ed. Further research is needed to define
relationships between size distribution (in one or two
intervals) and the cement properties.
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