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Abstract: We discuss a novel approach to control bifurcations in nonlinear systems. The 
aim of bifurcation tailoring is to design an appropriate control law such that the 
controlled system has a desired bifurcation diagram. After describing two open-loop 
bifurcation tailoring techniques, this paper proposes two alternative modified bifurcation 
tailoring methods based on the use of the Newton-flow algorithm and the so-called 
Minimal Control Synthesis adaptive control strategy.  The novel technique is applied to 
the Duffing system as an illustration example. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 

In recent years, there has been rapidly growing 
interest in control of bifurcations in nonlinear 
dynamical systems (Chen, 1999; Chen et al., 2000). 
The goal of bifurcation control is typically achieved 
by delaying the onset of an inherent bifurcation 
and/or stabilizing an existing one. Some of the 
bifurcation control approaches to solve these 
problems presented in the literature include linear or 
nonlinear static feedback (Abed and Fu, 1986), 
washout filter-aided dynamic feedback (Wang & 
Abed, 1995), harmonic balance approximation (Berns 
et al., 1998) and normal forms-based feedback (Kang, 
1998). In a broader sense, bifurcation control can be 
referred to as the task of designing a controller to 
modify the bifurcation properties of a given nonlinear 
system. Hence the goal becomes that of achieving a 
set of desirable asymptotic behaviours of the system 
as its parameters are varied.   
 
Recently, motivated by the control of bifurcations in 
complex flight dynamics, Lowenberg at al proposed 
the concept of bifurcation tailoring. This novel 
method is aimed at changing the bifurcation diagram 
of a given system to a desired one by appropriately 
varying extra system parameters in addition to the 
bifurcation parameter (Lowenberg, 1998a, 1998b; 
Lowenberg and Richardson, 1999). The original 
bifurcation tailoring technique involves an ‘inversion’ 
of the bifurcation continuation method as used in 
software such as AUTO (Doedel & Wang, 1995), 
therefore, is open-loop in nature from a control point 

of view. In other words, it cannot guarantee the 
stability of the desired behavior (equilibrium points or 
limit cycles) at any given value of the bifurcation 
parameter. Therefore, in addition to the feedforward 
control, an effective feedback mechanism should be 
added to the original bifurcation tailoring technique to 
address disturbances and modeling errors, so as to 
guarantee the stability and robustness of the 
controlled system. 
 
This paper is concerned with the development of such 
a feedback mechanism through the synthesis of novel 
bifurcation tailoring methods. These are based on the 
combined use of an on-line continuation technique 
(the Newton-flow algorithm) and a sophisticated 
adaptive control strategy, the Minimal Control 
Synthesis Algorithm or MCS (Stoten and 
Benchoubane, 1990a, 1990b). 
 
The rest of the paper is outlined as follows. Definition 
of bifurcation tailoring is presented in Section 2. In 
Section 3, open-loop bifurcation tailoring techniques 
and their limitations are discussed. Section 4 proposes 
two open-loop plus close-loop bifurcation tailoring 
methods. An illustration example is presented in 
Section 5. 
 
 

2. BIFURCATION TAILORING: STATEMENT OF 
THE PROBLEM 

 
Consider a continuous-time dynamical system 
described by 
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where nℜ∈x  and mℜ∈y  are the state and output 
of the system, respectively. Here, we assume that 

ℜ∈p  is a slow-varying system parameter and 
mℜ∈q  is the vector of all other system parameters 

or external control inputs.  The bifurcation tailoring 
problem is to design a control law q such that the 
output of the controlled system has a desired 
dynamical behavior as the parameter p  varies from 

ap  to bp , i.e., 

),()(* tppd gy =          for ],[ ba ppp ∈ ,  (2) 

where for a given ],[ ba ppp ∈ , ),( tpg  could be 
a point, a limit cycle or even chaotic. 
 
Without loss of generality, we could assume that the 
outputs are the first m states of the system which we 
label with Ix , i.e.,  

T
mI xx ],[ 1 m== xy .                    (3) 

 
3. OPEN-LOOP BIFURCATION TAILORING 

 
3.1 Bifurcation Tailoring of Equilibria 
 
In what follows we focus our attention on the 
problem where the desired objective is for the 
controlled system to exhibit a branch of equilibria 
such that, as the parameter p is varied, 

)()( ppI gx = ,    for [ ]ba ppp ,∈       (4) 
where g  is an m-dimensional smooth function of p . 

This means that, for a given ],[ ba ppp ∈ , the 
desired output is a point and this point varies 
smoothly as p  varies from ap  to bp . 

 
Partition the state vector x as TT

II
T
I ][ xxx = , where 

T
nmII xx ],[ 1 l+=x  and define the auxiliary vector 

z as:       
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For any given ],[ ba ppp ∈ , z  should satisfy the 
equation: 

0),(~),,),(( =≡ ppp II zfqxgf .            (6) 
In fact, if (6) is satisfied the system will exhibit a 
branch of equilibria with the desired shape over the 
parameter range ],[ ba ppp ∈ . 
 
The Implicit Function Theorem (IFT)  states that if 
the Jacobian of f with respect to z  is invertible, then 
Eq. (6) implicitly defines z as a function of p, i.e., 

 
 
Fig. 1. Structure of the open-loop bifurcation tailoring. 
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which means that  
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is an equilibrium point of the open-loop system 

))(*,,( pp dqxfx =D .                     (9) 

Therefore, if *dx  is an asymptotically stable 

equilibrium point of (9) for any ],[ ba ppp ∈ , then 
one may use the open-loop control input 

)(* pdqq = to achieve the goal of bifurcation 
tailoring.  
 
Thus, as shown in Fig. 1, the implementation of  
bifurcation tailoring requires the on-line solution of 
equation (6), i.e. the so-called continuation of the 
system solution. This can be achieved in two different 
ways. 

 
3.2Open-loop Bifurcation Tailoring via Continuation 
 
Partitioning the interval ],[ ba pp  into l-1 
sufficiently small subintervals, the endpoints of the 
subintervals are as follows: 

blla pppppp =<<<<= −110 � .    (10) 
Starting from 
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one can use numerical continuation technique (such 
as AUTO) to find consecutive points of a solution 
branch to equation (6). 
 



     

3.3 Open-loop Bifurcation Tailoring via Newton Flow 
 
One may also use the following continuous Newton 
algorithm: 
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to solve equation (6) as )(tpp =  varies slowly 

from app =)0(  to bf ptp =)(  at some time ft .  
 
The initial values are taken as 

)()0( aIIIId pxx = ,  )()0( ad pqq =  .      (13) 
For fixed value of p , the right hand side of (12) is 
commonly referred to as (gradient) Newton flow. The 
stability of Newton flows has been studied 
extensively (Jongen et al., 1986; Zufiria and Guttalu, 
1990). If )(tpp =  varies sufficiently slowly, then 

 ))((*)( tpt dd qq ≈ , ))((*)( tpt IIdIId xx ≈ . 
 
 
3.4 Limitation of Open-Loop Bifurcation Tailoring 
 
As anticipated in the introduction, the open-loop 
bifurcation tailoring technique presented above 
presents some limitations and disadvantages. 
 
I. It’s possible that for some ],[ ba ppp ∈ , *dx  is 
not an asymptotically stable equilibrium point of (9). 
In this case, the open-loop input )(* pdqq =  
cannot achieve the goal of control.  
 
II. The basic assumption needed for the successful 
implementation of the open-loop bifurcation tailoring 
is the ‘almost complete knowledge’ of the system 
under investigation. For realistic engineering 
applications such knowledge cannot be assumed.   
 
The limitations of open-loop bifurcation tailoring 
suggest that some sort of feedback mechanism should 
be necessary to achieve the goal of bifurcation 
tailoring. The ability to achieve a prescribed goal in 
the presence of uncertainties is the main reason for 
feedback. In other words, we want to design an open-
loop plus close-loop control law of the form, 

)()(*)( ppp d qqq δ+= ,            (14) 

so that )(* pdx  is an asymptotically stable 
equilibrium point of the controlled system 

))(,,( pp qxfx =D .                   (15) 

for ],[ ba ppp ∈  (Fig. 2). 
 

4. OPEN-LOOP PLUS CLOSE-LOOP 
BIFURCATION TAILORING 

 

 
Fig.2. Structure of open-loop plus close-loop 
bifurcation tailoring. 
 
 
4.1 Close-Loop Bifurcation Tailoring via Linear 
Feedback 
 
Denote )(* pdp xxx −=δ , )(* pp qqq −=δ . 
The linearization of (15) at the equilibrium point 

)(* pdx  is given by 
 

ppppp qbxAx δδδ +=D ,              (16) 
where 

)*(
)*(

pqq
pp d

=
=∂

∂= xxx
fA ,   

)*(
)*(

p
pp d

qq
xxq

fb
=
=∂

∂= .    (17) 

 
Suppose that the open-loop control law is derived 
using the continuation method of Section 3.2. At 

ipp = , (16) becomes 

iiiii ppppp qbxAx δδδ +=C .            (18) 
 
The feedback control law is taken as 

iii p
T

pp xkq δδ −= ,                      (19) 

where the gain vector 
ipk  is chosen so that the real 

parts of the eigenvalues of the matrix  
T

pppi iii
p kbAJ −=)(               (20) 

are all negative. Therefore, )(* id px  is a locally 
asymptotically stable equilibrium point of the 
controlled system, 

))(,,( ii pp qxfx =D ,    li ,,2,1 m= ,    (21) 
where 

)()(*)( iii ppp qqq δ+= .            (22) 
 
The whole control law is a piece-wise linear control 
law of the form (Fig. 3) 



     

 
Fig. 3. Structure of open-loop plus linear feedback 
bifurcation tailoring. 
 
 

ii p
T

pipp xkqq δ−= )(*)(             (23) 

for ),[ 1+∈ ii ppp ,  1,2,1 −= li l .   
 
To perform an asymptotical error analysis of the 
controlled system, for ),( 1+∈ ii qqp , we have 
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According to the continuity of the solutions of 
equations and the eigenvalues of matrices, if the 
subinterval ),( 1+ii pp  is sufficiently small, then 
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(25) 
where ]0,0,1,,1[ ��=c , which means that 

ppd i
M xxyy −≤− *     as ∞→t ,   (26) 

where M  is a positive constant. Better performance 
may be obtained by PI control. 
 
4.2 Close-Loop Bifurcation Tailoring via Adaptive 
MCS Control 
 
Now suppose that the open-loop bifurcation tailoring 
is implemented via Newton-flow of Section 3.3. We 

 
Fig. 4. Structure of open-loop plus MCS adaptive 
bifurcation tailoring. 
 
want to design an open-loop plus close-loop control 
law of the form 

)()()( ttt d qqq δ+= ,                    (27) 

so that ))((*)( 11 tpt dxx ≈  for ftt ≤ . 
 
Denote )()()( ttt dxxx −=δ  with 
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Linearization of the controlled system 
))(,,( tp qxfx =�                     (29) 

at ),( dd qx  is given by 

qbxAx δδδ )()( tt +=� ,              (30) 
where 
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In order to guarantee the stability of the origin of the 
time-varying system (30), we choose a particularly 
attractive adaptive control technique. Namely, we 
consider the so-called minimal control synthesis 
(MCS) adaptive control algorithm first presented in 
(Stoten and Benchoubane, 1990a, 1990b; Stoten and 
Di Bernardo, 1996).  According to the MCS 
algorithm, the control signal qδ  is chosen as (Fig. 4): 

)()()( ttt xkq δδ = ,                    (32) 
with 

),()()()()(
0

ttdt T
e

t T
e xyxyk δβττδτα ∫ +=                         

where α  and β  are positive scalar adaptation 
weights and the initial conditions )0(k are usually 
set to zero. The output error is obtained as 

)()( tt ee xcy δ−= ,                    (33) 



     

where the output error matrix ec  is determined from 
the positive-definite solution of the Lyapunov 
equation 

0QQPAPA >−=+ ,T
mm ,         (34) 

as 
]100[, m== T

e
T
ee bPbc ,      (35)  

where we take IQ =  and 
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is a Hurwitz matrix. 
 
 

5. SIMULATION RESULTS 
 
As an illustrative example, we consider a second-
order Duffing system of the form 





+−−=

=

qxxpxx
xx

2
3
112

21

D

D

              (36) 

This system is often used as a testbed for bifurcation 
and chaos control techniques and can be used to 
model nonlinear mechanical oscillators (Chen 1999). 
For fixed value of 0=q , this system exhibits a 
pitchfork bifurcation at 0=p . It has one 
equilibrium point )0,0(  for 0≤p , and three 

equilibrium points )0,0( , )0,( p±  for 0>p . 

Fig. 5 shows that the stable node )0,0(  for 0<p  
bifurcates into a saddle )0,0(  and two stable nodes 

)0,( p± . 
 
Now assume that )(tpp =  is a slow varying 
parameter. We want to design a control law )(tq  so 
that the controlled system has the following desired 
behavior: 

)(5.0)(*1 tppx d =  ,                 (37) 

as p  increases from 0)0( =p  to 5)( =ftp . The 
corresponding Newton flow becomes 
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Fig. 6 shows the trajectory of )(tqd  which is used as 
the open-loop input to system (36). However, as 
shown in Fig. 7, the open-loop input alone cannot 
create the desired system behavior. Therefore, we add 
a close-loop input )(tqδ computed by the MCS 
algorithm with 2.0=α  and 5.0=β . As shown in 
Fig. 8, under the hybrid open-loop and close-loop 

control input )()()( tqtqtq d δ+= , the controlled 
system (36) has the desired behavior (37). 
 
 

6. CONCLUSIONS 
 

This work investigated open-loop plus close-loop 
bifurcation tailoring techniques.  Using a 
representative example, we showed that the 
methodology presented in this paper can be 
successfully applied to control the bifurcation 
diagram of a nonlinear system. A more realistic 
application to the control of aircraft dynamics is 
currently under investigation (Charles, et al., 2001). 
 
Generally, from a control theory point of view, the 
bifurcation tailoring problem can be viewed as a 
particular type of output tracking problem which 
consists of designing a control law able to achieve 
tracking of a prescribed reference signal. The 
difficulty of bifurcation tailoring is that the reference 
signal is a function of a slow-varying system 
parameter p and this function may be discontinuous 
at some bifurcation point. We should guarantee the 
tracking of the reference signal as p  varies from ap  

to bp . 
 
The problem of controlling the output of a system so 
as to achieve asymptotic tracking of prescribed 
trajectories and asymptotic rejection of undesired 
disturbances is one of the most fundamental problems 
in control theory (Isidori and Byrnes, 1990). An 
investigation on the applicability of output tracking 
techniques to bifurcation tailoring should be pursued 
in future work. 
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Fig. 5.  Bifurcation diagram of the uncontrolled 
system (36). 

 

 
Fig. 6. The nominal feedforward input )(tqd . 

 

 
Fig. 7. Bifurcation diagram of the controlled system 
(36) with feedforward control input only. 

 

 
Fig. 8. Bifurcation diagram of the controlled system 
(36) with hybrid control input. 
 


