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Abstract: This paper addresses the robust learning control problem for a class of nonlinear
systems with structured periodic and unstructured aperiodic uncertainties. A recursive tech-
nique is proposed which extends the currently popular backstepping idea to the robust repetitive
learning control systems. An learning evaluation function instead of a Lyapunov function is
formulated as a guideline for derivation of the control strategy which guarantees the asymptotic
stability of the tracking system. The proposed method is validated by simulation of tracking
control of two systems with periodic uncertainties, one of which is the well-known van der Pol
chaotic oscillator.
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1. Introduction

Recently some nonlinear learning control schemes
were proposed by Park et al. (1996), Xu and Qu
(1998). It was shown that nonlinear feedback can
be incorporated into iterative learning control to
achieve asymptotic convergence of tracking control
for a class of nonlinear systems described by an
canonical integrator chained form. In Xu et al.
(2000) it was further shown that this nonlinear
learning control scheme can be applied to systems
with both periodic and aperiodic uncertainties by
introducing a sliding mode into the learning con-
trol systems. Although these methods are effective,
they are quite restrictive due to the requirement
of specific system models, and all uncertainties ap-
pears only in the last equation, that is, uncertainties
are matched with control input.

As it is well known, nonlinear systems with con-
stant unknown parameters have been extensively
studied along the direction of adaptive control
strategy mainly based on Lyapunov method. In re-
cent years, a constructive design methodology uti-
lizing the so-called backstepping technique has been
developed and attracted much attention (Kokotović
and Arcak 2001, Kristć et al. 1995). A distinguish-

ing advantage of this method is it overcomes the
relative degree one restriction and can be used to
treat the unmatched uncertainties. Furthermore,
this method is based on the concept of adaptive
control Lyapunov function and, therefore, enables
rigorous analysis of asymptotic stability and con-
vergence. However, a hypothesis of zero derivative
of uncertain parameters is required, which makes it
difficult for application in the systems with time-
varying uncertainties.

In this paper we try to combine together the
backstepping technique and the learning control
mechanism for developing a constructive control
strategy to cope with nonlinear systems with both
structured periodic and unstructured aperiodic un-
certainties. This, on the one hand, will broaden the
domain of the applicability of both two useful de-
sign tools, and on the other hand, will give a new
method for solving the tracking control problem for
a large class of nonlinear systems. For this purpose
a multiple learning mechanism is proposed for the
first time, which allows one to overcome the un-
matched uncertainty difficulty. Unlike other learn-
ing control schemes, a moving average value of the
estimation (not the estimation itself) is used in our
learning controller. This makes it possible to design
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the controller by a recursive procedure.

2. Problem formulation

Consider the following nonlinear uncertain system:

ẋ1 = x2 + w1(x1, t) + φT
1 (x1)γ(t)

ẋ2 = x3 + w2(x1, x2, t) + φT
2 (x1, x2)γ(t)

...
ẋn−1 = xn + wn−1(x1, · · · , xn−1, t)

+φT
n−1(x1, · · · , xn−1)γ(t)

ẋn = u + wn(x1, · · · , xn, t)
+φT

n (x1, · · · , xn)γ(t)
y = x1

(1)
where x(t) = [x1, x2, · · · , xn]T ∈ Rn is the system
state, u ∈ R is the control input to be determined,
φi(x), i = 1, . . . , n are known smooth vector func-
tions, γ(t) ∈ Rp represents some structured time-
varying uncertainty with τ -periodic property, i.e.,
γ(t) = γ(t + τ), and w1(x1, t), · · · , wn(x1, · · · , xn, t)
are some unstructured uncertainties bounded by
known functions:

‖wi(x1, · · · , xi, t)‖ ≤ ∆i(x1, · · · , xi), i = 1, · · · , n.
(2)

For functions ∆i(x1, · · · , xn) we make the following
assumptions:

Assumption 1: It is assumed that ∆i(0) = 0, and
derivative of ∆i(x) exists and is zero at x = 0 for
all i = 1, · · · , n.

Assumption 1 is made for establishing asymptotic
stability with respect to x = 0. When it is not the
case, a slight modification of the proposed proce-
dure in the next section will achieve boundedness
and convergence to a compact set around x = 0.

The reference signal is generated by a known
asymptotically stable system:

yr = Gd(s)r(s) =
kd

sn + dn−1sn−1 + · · · + d0
r(s).

(3)
where sn + dn−1s

n−1 + · · ·+ d0 is Hurwitzian, kd >
0, and r(t) is bounded and piecewise continuous.
In repetitive control r(t) is a τ -periodic although
it may not be required in general in our problem.
The control objective is to design an appropriate
control input u(t) ∈ R for the uncertain system
(1) such that the system output y(t) tracks yr(t)
with a predescribed accuracy, i.e., for a given small
tolerance ε > 0, there exists a t1 > 0 such that

‖y(t) − yr(t)‖ ≤ ε,∀t > t1 (4)

where, and throughout the paper, ‖ · ‖ denotes Eu-
clidean norm.

It is worth noting that both unstructured and
structured periodic uncertainties are “unmatched”
with the control input. This is the main obstacle
against applying current leaning control mechanism
to such systems. Note that system (1) is subject to
the so-called parametric strict-feedback structure
which has been extensively studied in references
by using the backstepping-based robust adaptive
control methodology technique (see, e.g., Kokotović
and Arcak 2001, Kristć et al. 1995). It utilizes the
concept of adaptive control Lyapunov function. A
hypothesis of zero derivative of the uncertain pa-
rameters is thus needed for the method. However,
in our problem γ(t) can be time-varying rather than
constant and its derivative is unknown or even does
not exist. This makes the existing robust adaptive
design procedure unapplicable either. The main
goal of this paper is to extend the backstepping
technique to the robust learning control mechanism
and develop a new constructive control strategy to
cope with nonlinear systems with both structured
periodic and unstructured aperiodic uncertainties.

In learning control design, because of the peri-
odicity of the operation and uncertainties, the time
axis [0,∞) is segmented into a series of time in-
tervals of the form [(i − 1)τ, iτ ], i = 1, 2, · · ·, each
of which is call a learning trial (Xu et al., 2000).
For convenience, we denote all variables in the i-
th learning trial with the help of a superscript, for
example, xi(t) = x((i − 1)τ + t), t ∈ [0, τ ], and
F i(x) = F (xi(t)).

3. Robust learning control de-
sign

3.1. Robust learning control algorithm

The underlying idea of robust learning control is to
learn and approximate the unknown periodic func-
tions by using a repetitive learning mechanism and
suppress any unstructured uncertainties by using a
robust control technique.

The robust learning controller consists of three
parts:

ui = −(F i
n)T v̄i + αi

n(x, xd) + βi
n(x, xd) (5)

where (F i
n)T v̄i is the learning function which ap-

proximates nonlinear dynamics with periodic un-
certainties, αi

n(x, xd) is the learning control part
which online compensates leaning and tracking er-
rors, βi

n(x, xd) is the robust control part suppress-
ing unstructured uncertainties. In (5) v̄i is the mov-
ing average estimation of uncertainty γ(t) in the



(i − 1)-th learning trial, i.e.,

v̄i(t) =
1
τ




τ∫
t

vi−1(s)ds +

t∫
0

vi(s)ds


 , (6)

and the approximation for structured periodic un-
certainty γ(t) is updated via the following learning
mechanism:

vi = vi−1 + k1F
i
1(x, xd)zi

1(x, xd) + · · ·
+kn−1F

i
n−1(x, xd)zi

n−1(x, xd)

+knF i
n(x, xd)sgn(zi

n(x, xd)) (7)

with the initial value as a constant

v1(t) = v0, t ∈ [0, τ ], (8)

where k1, k2, · · · , kn > 0 are some constant feed-
forward gains, F i

j , z
j
i , j = 1, · · · , n are some learn-

ing structure functions and error functions in the
control process, which are to be specified in the
subsequent subsections, sgn(·) is the sign function
defined as

sgn(x) =




1, if x > 0;
0, if x = 0;
−1, if x < 0.

(9)

3.2. Evaluation function for learning con-
trol

We introduce the following evaluation function as a
guideline for derivation of the robust learning con-
trol law:

Ei(t) =

t∫
0

‖γ(s) − vi(s)‖2ds. (10)

The difference of evaluation function between two
successive trials is

∆Ei(t) = Ei − Ei−1

=

t∫
0

[(vi(s) − vi−1(s))T (vi(s) + vi−1(s) − 2γ(s))]ds.

The key idea of derivation of the learning controller
is to ensure the decay of the evaluation function
and hence ensure the convergence of the learning
algorithm.

3.3. The recursive design procedure

We start by controlling the first equation of (1)
considering x2 to be a control input. The second
step is a typical one and crucial for understanding

the general design procedure. The robust learning
controller and estimation update law are designed
in the final step. The details of the design proce-
dure and stability analysis of the closed-loop system
are omitted due to page limitation. However, two
design examples are given below to illustrate the
method.

4. Design Examples

The first example shows the method is applicable to
systems with nondifferentiable periodic uncertain-
ties, and the second example shows it can be used
for controlling chaotic systems with unknown forc-
ing signals and parameters as well.

Example 1: Consider the following nonlinear sys-
tem {

ẋ1 = x2 + x1γ1(t)
ẋ2 = u + x2

2γ2(t)
y = x1

(11)

where γ1(t) and γ2(t) are unknown periodic uncer-
tainties, period of which is known as τ = 10. In
simulation they are taken as triangular and sinu-
soid functions shown in Figures 1. Obviously, these
uncertainties can not be directly handled by tradi-
tional adaptive control mechanism.

The reference signal is generated by the following
linear system:{

ẋd,1 = xd,2

ẋd,2 = −5xd,1 − 4xd,2 + A sin(ωt + π
3 )

yr = xd,1

(12)

In simulation we take A = 5.5, ω = π
5 . Note that,

in general, the period of the target signal can be
different from that of the uncertainties.
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Figure 1: Periodic time-varying uncertainties



The learning control mechanism consists of the
following two parts:

Learning control

ui = −(F i
2)

T v̄i + αi
2; (13)

Update law

vi = vi−1 + k1F
i
1z

i
1 + k2F

i
2sgn(zi

2), (14)

where k1, k2 > 0.
Comparing system (11) with (1) shows that w1 =

w2 = 0 and

φ1 = [x1, 0]T , φ2 = [0, x2
2]

T .

According to the design procedure sketched in Sec-
tion 3.3, we let

zi
1(t) = xi

1(t) − xi
d,1(t).

Recall that

xi
1(t) = x1((i − 1)τ + t), t ∈ [0, τ ].

Similar notations are applied to zi
1(t), xi

d,i(t) and
other variables to be introduced in sequence.

The virtual control for xi
2 is

µi
2 = −(F i

1)
T v̄i + αi

1,

where

v̄i = 1
τ

[
τ∫
t

vi−1(s)ds +
t∫
0

vi(s)ds

]
,

F i
1 = φi

1 = [xi
1, 0]T ,

and

αi
1 = −kf1

2
(xi

1 − xi
d,1) + xi

d,2 −
k1

2
(xi

1)
2(xi

1 − xi
d,1).

Therefore,

zi
2 = xi

2 − µi
2 = xi

2 + xi
1v̄

i + (kf1
2

+(F i
1)

T (vi − vi−1) + k1
2 (xi

1)
2)(xi

1 − xi
d,1) − xi

d,2,

F i
2 = φi

2 −
∂µi

2

∂xi
1

φi
1

=[(v̄i
1 +

kf1

2
+

3
2
k1(xi

1)
2 − k1x

i
1x

i
d,1)x

i
1, (xi

2)
2]T .

From the recursive design procedure we obtain

αi
2 = −kf2

2
zi
2 −

k2

2
(F i

2)
T F i

2sgn(zi
2)

−k1(F i
1)

T F i
2z

i
1 −

k1

k2
zi
1 +

∂µi
2

∂xi
1

xi
2 +

1
2
(kf1 + k1(xi

1)
2)xi

d,2

+(−5xi
d,1 − 4xi

d,2 + A sin(ωt +
π

3
))

−
(

(F i
1)

T +
1
k2

sgn(zi
2)(v

i−1 − v̄i)T

)
(vi − vi−1).
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Figure 2: System output (solid) and reference
signal (dashed).
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Figure 3: Error versus iteration.

We have thus determined the learning control (13)
and update law (14). Taking the control param-
eters as k1 = 0.2, k2 = 0.1, kf1 = kf2 = 6 we
have conducted the simulation. Figure 2 shows the
system output tracks the reference signal after a
few learning trials. Figure 3 depicts the maximum
tracking error versus iteration.

Example 2: In this example we consider the well-
known van der Pol oscillator

ẋ1 = x1 − 1
3x3

1 − x2 + p + F (t)
ẋ2 = 0.1(x1 + a − bx2) + u

(15)

where F (t) = qcos(wt) is a periodic exciting sig-
nal, u is a control input. Van der Pol’s equation
provides an example of an oscillator with nonlinear
damping, energy being dissipated at large ampli-
tudes and generated at low amplitudes. Such sys-
tems typically possess limit cycles, sustained even
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Figure 4: Von der Pol chaotic attractor.

chaotic oscillations around a state at which genera-
tion and dissipation balance, and they arise in many
physical problems. A typical chaotic behavior of
van der Pol oscillator without control (i.e., u = 0)
is presented in Figure 4 (parameters are chosen as
ω = 1, a = 0.7, b = 0.8, p = 0 and q = 0.74).

In our problem not only the parameters a, b, p, q
but also the forcing signal F (t) are assumed un-
known. Our task is to design a control input to
force the system to track a periodic reference gen-
erated by the following system

{
ẋd,1 = xd,2

ẋd,2 = −5xd,1 − 4xd,2 + r(t)
yr = xd,1

(16)

where r(t) = −1 + 5.5 sin(ωt + π
2 ).

We do not try to suppress F (t) by a robust con-
troller, because, on the one hand, it is not a state-
dependent perturbation or a minor disturbance but
a significant forcing signal to the system; on the
other hand, a robust controller does not give any
performance improvement in presence of such a pe-
riodic uncertainty. So we treat F (t) as a part of
structured periodic uncertainties to be learnt. Now
rewrite the van der Pol’s equation in the canonical
form (1):

ẋ1 = −x2 + x1 − 1
3x3

1 + φT
1 γ(t)

ẋ2 = u + 0.1x1 + φT
2 γ(t) (17)

where

φ1 = [1, 1, 0, 0]T ,

φ2 = [0, 0, 1, −x2]T ,

and γ(t) = [γ1 γ2 γ3 γ4]T represents the periodic
(or constant) uncertainties p, F (t), a, b.

There are some known terms in the right-hand
side of equation (15). They may be considered as a
trivial case of wi in equation (1).

According to the design procedure sketched in
Section 3.3, we let

zi
1(t) = xi

1(t) − xi
d,1(t).

Recall that

xi
1(t) = x1((i − 1)τ + t), t ∈ [0, τ ].

The virtual control for −xi
2 is

µi
2 = −(F i

1)
T v̄i + αi

1 + βi
1,

where
F i

1 = φi
1 = [1, 1, 0, 0]T ,

βi
1 = −xi

1 +
1
3
(xi

1)
3,

and

αi
1 = −kf1

2
(xi

1 − xi
d,1) + xi

d,2

−k1

2
(φi

1)
T φi

1(x
i
1 − xi

d,1)

= −(
kf1

2
+ k1)(xi

1 − xi
d,1) + xi

d,2.

Therefore,

zi
2 = xi

2 − (−µi
2)

= xi
2 − (φi

1)
T v̄i − xi

1 +
1
3
(xi

1)
3

−(F i
1)

T (vi − vi−1) − (
kf1

2
+ k1)(xi

1 − xi
d,1) + xi

d,2,

F i
2 = φi

2 −
∂µi

2

∂xi
1

φi
1

[−1 + (xi
1)

2 − kf1

2
− k1, −1 + (xi

1)
2 − kf1

2
− k1,

1, −xi
2]

T .

From the recursive design procedure we get

αi
2 = −kf2

2
zi
2 −

k2

2
(F i

2)
T F i

2sgn(zi
2)

−k1(F i
1)

T F i
2z

i
1 −

k1

k2
zi
1 +

∂µi
2

∂xi
1

xi
2

−(
kf1

2
+ k1)xi

d,2 − (−5xi
d,1 − 4xi

d,2 − 1

+5.5 sin(ωt +
π

2
))

+
(

(F i
1)

T − 1
k2

sgn(zi
2)(v

i−1 − v̄i)T

)
(vi − vi−1).
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Figure 5: Controlled output (solid) and reference
signal (dashed).
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Figure 6: Error versus iteration.

We thus obtained the learning control and update
law

ui = −(F i
2)

T v̄i − 0.1xi
1 + αi

2; (18)

and

vi = vi−1 + k1F
i
1z

i
1 + k2F

i
2sgn(zi

2). (19)

Taking the control parameters as k1 = 0.2, k2 =
0.1, kf1 = kf2 = 6, we have conducted the simula-
tion. Figure 5 shows the system output tracks the
reference signal after several learning trials. Fig-
ure 6 depicts the maximum tracking error versus
iteration. The figures also show that the learning
time is longer than in the first example. This may
be explained by the chaotic nature of the system.

5. Conclusion

A constructive method has been proposed for de-
signing robust learning controllers for a class of
nonlinear systems with periodic structured uncer-
tainties and aperiodic unstructured uncertainties.
The recursive technique proposed in this paper can
be regarded as an extension of the currently popu-
lar backstepping idea to the robust learning control
systems. However, the control law is not derived by
the guidance of any (adaptive) Lyapunov function.
Instead, a repetitive learning evaluation function
was formulated for establishing the asymptotic sta-
bility of the tracking system. The main advantage
of this method is it does not need the derivative in-
formation of the uncertainties. Therefore it makes
it possible to remove the hypothesis of zero deriva-
tive of uncertain parameters in the case when the
time-varying uncertainty is periodic. The proposed
method is validated by simulation of tracking con-
trol of two systems with periodic uncertainties, one
of which is the well-known van der Pol chaotic os-
cillator.
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