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1. INTRODUCTION

During the last decade, hybrid and switched
systems have attracted considerable attention
(Chase, Serrano & Ramadge, 1993; Branicky,
1998; Wicks, Peleties & DeCarlo, 1998; Ye, Michel
& Hou, 1998; Liberzon & Morse, 1999). Basi-
cally, a switched system consists of continuous-
time/discrete-time dynamical subsystems and a
rule (supervisor) that determines the switching
among them.

Switched systems deserve investigation for theo-
retical reasons as well as for practical reasons.
Switching among different system structures is
an essential feature of many engineering control
applications including power systems and power
electronics, and switched systems have numer-
ous applications in control of mechanical sys-
tems, air traffic control, aircrafts and satellites
and many other fields (Li, Wen & Soh, 2001).
Control techniques by switching among different
controllers have been applied extensively in recent
years. Indeed, a switched controller can provide a
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performance improvement over a fixed controller
(Morse, 1996; Narendra & Balakrishnan, 1997;
Savkin, Skafidas & Evans, 1999). The switched
controller architecture is proven to be a rigor-
ous design framework for general nonlinear sys-
tems (Kolmanovsky & McClamroch, 1996; Caines
& Wei, 1998; Leonessa, Haddad & Chellaboina,
2001). A switched controller can also achieve
certain control objects which cannot be accom-
plished by conventional methods, such as pure
feedback stabilization of nonholonomic systems
(Brockett, 1983).

A fundamental pre-requisite for the design of
feedback control systems is full knowledge about
the structural properties of the switched systems
under consideration. These properties are closely
related to the concepts of controllability, observ-
ability and stability which are of fundamental
importance in the literature of control. For con-
trollability and reachability, studies for low-order
switched linear systems have been presented in
Loparo, Aslanis & IIajek (1987) and Xu & Antsak-
lis (1999). Some sufficient conditions and neces-
sary conditions for controllability were presented
in Ezzine & Haddad (1989) for switched linear
control systems under the assumption that the
switching sequence is fixed a priori. The com-
plexity of stability and controllability of hybrid

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



systems was addressed in Blondel & Tsitsiklis
(1999).

For controllability analysis of switched linear con-
trol systems, a much more difficult situation arises
since both the control input and the switching rule
are design variables to be determined, and thus
the interaction between them must be fully under-
stood. For a switched linear discrete-time control
system, the controllable set is not a subspace but
a countable union of subspaces in general case
(Stanford & Conner, 1980; Ge, Sun & Lee, 2001).
For a switched linear continuous-time control sys-
tem, the controllable set is an uncountable union
of subspaces (Sun & Zheng, 2001).

In this paper, we investigate the controllability
and reachability issues for switched linear control
systems in detail. We prove that, both the con-
trollable set and the reachable set are subspaces of
the total space, and the two sets always coincide
with each other. Verifiable geometric characteri-
zation is presented for the controllable subspace.
The switching control design problem is also ad-
dressed.

2. ELEMENTARY RESULTS

Consider a switched linear control system given
by

ẋ(t) = Aσx(t) +Bσuσ(t) (1)

where x ∈ <n are the states, uk : <
+ ∈ <rk , k =

1, · · · ,m are piecewise continuous input functions,
σ : <+ → M = {1, 2, · · · ,m} is the switching
path to be designed, and matrix pairs (Ak, Bk)
for k ∈ M are referred to as the subsystems of
(1).

Given a switching path σ : [0, tf ] → M , sup-
pose its discontinuous (jump) time instants are
t1 < t2 < · · · < ts, we refer to the sequence
t0, t1, t2, · · · , ts as switching time sequence, and
the sequence σ(t0), σ(t1), · · · , σ(ts) as switching
index sequence. It is clear that these two sequences
can uniquely determine the switching path, and
vice-versa.

For clarity, let x(t;x0, u, σ) denote the state tra-
jectory at time t of switched system (1) starting
from x(0) = x0 with u(t) = [u1(t), · · · , um(t)]

T .

A state x is said to be controllable, if it can
be transferred to the origin in a finite time by
appropriate choices of input u and switching path
σ.

Definition 1. State x ∈ <n is controllable, if there
exist a time instant tf > 0, a switching path
σ : [0, tf ] → M , and inputs uk : [0, tf ] → <rk ,

k ∈M , such that x(tf ;x, u, σ) = 0.

Definition 2. The controllable set of system (1) is
the set of states which are controllable.

Definition 3. System (1) is said to be (com-
pletely) controllable, if its controllable set is <n.

The reachability counterparts can be defined in
the same fashion and are omitted here.

Denote Bk =ImBk, and Dk =
∑n−1

i=0 Ai
kBk for

k ∈ M . Note that Dk is exactly the controllable
subspace of subsystem (Ak, Bk).

By an elementary analysis (Sun & Zheng, 2001;
Ge, Sun & Lee, 2001), the reachable set of system
(1) is given by

R = ∪∞k=1 ∪i0,···,ik∈M ∪h1,···,hk>0(Dik +

eAik
hkDik−1

+ · · ·+ eAik
hk · · · eAi1

h1Di0) (2)

and the controllable set of system (1) is given by

C = ∪∞k=1 ∪i0,···,ik∈M ∪h0,···,hk>0(e
−Ai0

h0Di0

+ · · ·+ e−Ai0
h0 · · · e−Aik

hkDik) (3)

Given a matrix A and a subspace B ∈ <n, let
ΓAB denote the minimal A-invariant subspace
that contains B, i.e.,

ΓAB = B +AB + · · ·+An−1B

This operation can be defined recursively as
ΓA1

ΓA2
B = ΓA1

(ΓA2
B). Let us define the nested

subspaces for system (1) as

V1 =D1 + · · ·+Dm

Vj+1 =ΓA1
Vj + · · ·+ ΓAm

Vj , j = 1, 2, · · ·(4)

and

V =

∞
∑

k=1

Vk

Note that if dimVj =dimVj+1, then Vl = Vj
for l > j. This fact implies that V = Vn. It
is readily seen that this subspace is the minimal
subspace which is invariant under Ak, k ∈M and
contains

∑

k∈M Bk. See Ge et al. (2001) for the
computational issues of this subspace.

Note that eAtImB ⊂ ΓAImB for all A ∈ <n×n,
B ∈ <n×p and t ∈ <. This implies that

R ⊂ V, C ⊂ V (5)

In the sequel, we exploit several properties of
exponential matrix functions which play an im-
portant role in structural analysis for switched
linear systems.

Lemma 1. For any given matrix A ∈ <n×n and
subspace B ⊂ <n, the following equation holds
for almost all t1, t2, · · · , tn ∈ <



eAt1B + eAt2B + · · ·+ eAtnB = ΓAB (6)

Proof. Let S be the smallest subspace of <n that
contains the subspaces eAtB for all t ∈ <. Let B be
a matrix such that B =ImB. By Proposition 2.1 of
Drager et al. (1989), S is exactly the controllable
subspace of matrix pair (A,B) :

S = span{eAtBz : t ∈ <, z ∈ <n} = ΓAB (7)

Suppose eAt0jBzj , j = 1, · · · , n spans subspace S,
i.e.,

S = span{eAt01Bz1, · · · , e
At0nBzn}

This implies that

rank[eAt01B, · · · , eAt0nB] = dim(ΓAB)

Denote integer r = dim(ΓAB), and matrix func-
tion L(t1, · · · , tn) = [eAt1B, · · · , eAtnB]. Choose
a nonsingular sub-matrix M0 with maximal rank
in L(t01, · · · , t

0
n). Therefore, M0 is nonsingular and

rankM0 =rankL(t01, · · · , t
0
n). Denote the corre-

sponding sub-matrix of L(t1, · · · , tn) asM(t1, · · · ,
tn), and its determinant as d(t1, · · · , tn).

Since each entry in matrix M(t1, · · · , tn) is an an-
alytic function of variables t1, · · · , tn, d(t1, · · · , tn)
is also an analytic function of its variables. As
d(t01, · · · , t

0
n) 6= 0, function d(t1, · · · , tn) is not

identically zero. By Weierstrass Preparation The-
orem (Kaplan, 1966, Theorem 62), its zeros forms
a zero-measure set of <n. Therefore, for almost
all t1, · · · , tn, matrix M(t1, · · · , tn) is nonsingular.
This implies that

rank[eAt1B, · · · , eAtnB] ≥ dim(ΓAB)

for almost all t1, · · · , tn. Together with the fact
that eAtB ⊆ ΓAB, we can conclude that

eAt1B + · · ·+ eAtnB = ΓAB

for almost all t1, · · · , tn. ♦

Lemma 2. For any given matrices Ak ∈ <
n×n and

Bk ∈ <
n×pk , k = 1, 2, inequality

rank[A1e
A2tB1, B2] ≥ rank[A1B1, B2] (8)

holds for almost all t ∈ <.

Proof. Denote Ω(t) = [A1e
A2tB1, B2]. Choose a

nonsingular sub-matrix G with maximal rank in
Ω(0) = [A1B1, B2]. Denote the corresponding
sub-matrix of Ω(t) as ∆(t), and its determinant
as δ(t). It is standard that all elements of ∆(t)
are linear combinations of the form tkeλt, hence
δ : < → < is an analytic function on <. Because
δ(0) =detG 6= 0, the zeros of δ(t) are isolated

points (Kaplan, 1966, Theorem 43). Consequently,
δ(t) 6= 0 for almost all t ∈ <. Accordingly, for
almost all t, ∆(t) is nonsingular. Therefore,

rankΩ(t) ≥ rank∆(t) = rankG = rank[A1B1, B2]

for almost all t.

3. MAIN RESULTS

3.1 Geometric criteria

In this subsection, we shall identify the control-
lable set and the reachable set for switched linear
systems.

Theorem 1. For switched linear system (1), the
reachable set is

R = V (9)

Proof.We are to design a switching path σ such
that each point in V can be reached from the
origin via this switching path.

Let t0, · · · , tl and i0 = σ(t0), · · · , σ(tl) denote the
switching time/index sequences, respectively. As-
sume that the switching index sequence is peri-
odic. i.e.,

i0 = 1, i1 = 2, · · · , im−1 = m,

im = 1, im+1 = 2, · · · , i2m−1 = m, · · · (10)

The switching time sequence t0, · · · , tl and the
number l are to be designed later.

Let tf > tl. Let Rf denote the set of states which
are reachable at tf from the origin at t0 = 0. It
can be computed that

Rf = eAil
hl · · · eAi1

h1Di0 + eAil
hl · · · eAi2

h2Di1

+ · · ·+ eAil
hlDil−1

+Dil (11)

where hj = tj+1 − tj , j = 0, 1, · · · , l − 1 and
hl = tf − tl.

Since

eAil
hl · · · eA2h1D1 + · · ·+ eAil

hlDil−1
+Dil =

eAil
hl(eAil−1

hl−1 · · · eA2h1D1 + · · ·+Dil−1
) +Dil

it follows from Lemma 2 that

dim(eAil
hl · · · eA2h1D1 + · · ·+ eAil

hlDil−1
+Dil)

≥ dim(eAil−1
hl−1 · · · eA2h1D1 + · · ·

+eAil−1
hl−1Dil−2

+Dil−1
+Dil) (12)

for almost all hl.

By repeatedly applying Lemma 2, for almost all
hl, · · · , hl−m+1, we have



dim(eAil
hl · · · eA2h1D1 + · · ·+ eAil

hlDil−1
+Dil)

≥dim(eAiτ1
hτ1 · · · eA2h1D1+ · · ·+ eAiτ1

hτ1Diτ1−1

+Diτ1
+Diτ1+1

+ · · ·+Dil)

= dim(eAiτ1
hτ1 · · · eA2h1D1 + · · ·+Diτ1

+ V1)

where τ1 = l −m.

It follows from Lemma 2 that

dim(eAiτ1
hτ1 · · · eA2h1D1 + · · ·+Diτ1

+ V1)

= dim(eAiτ1
hτ1 e

Aiτ1−1
hτ1−1(e

Aiτ1−2
hτ1−2 · · ·

×eA2h1D1 + · · ·+ e
Aiτ1−2

hτ1−2Diτ1−3

+Diτ1−2
) + eAiτ1

hτ1Diτ1−1
+Diτ1

+ V1)

≥ dim(eAiτ1
hτ1 (e

Aiτ1−2
hτ1−2 · · · eA2h1D1 + · · ·

+e
Aiτ1−2

hτ1−2Diτ1−3
+Diτ1−2

)

+eAiτ1
hτ1Diτ1−1

+Diτ1
+ V1)

= dim(eAiτ1
hτ1 (e

Aiτ1−2
hτ1−2 · · · eA2h1D1 + · · ·

+e
Aiτ1−2

hτ1−2Diτ1−3
+Diτ1−2

+Diτ1−1
)

+Diτ1
+ V1)

for almost all hτ1−1.

Proceed by the same reasonings, we have

dim(eAiτ1
hτ1 · · · eA2h1D1 + · · ·+Diτ1

+ V1)

≥ dim(eAiτ1
hτ1 (e

Aiτ1−m
hτ1−m · · · eA2h1D1

+ · · ·+ e
Aiτ1−m

hτ1−mDiτ1−m−1
+Diτ1−m

+ · · ·+Diτ1−1
) +Diτ1

+ V1)

= dim(eAiτ1
hτ1 e

Aiτ1−m
hτ1−m

(e
Aiτ1−m−1

hτ1−m−1 · · · eA2h1D1 + · · ·

+Diτ1−m−1
) + eAiτ1

hτ1V1 +Diτ1
+ V1)

for almost all hj , j = τ1 − 1, · · · , τ1 −m+ 1.

Continuing the above process gives

dim(eAiτ1
hτ1 · · · eA2h1D1 + · · ·+Diτ1

+ V1)

≥ dim(eAiτ1
hτ1 e

Aiτ1−m
hτ1−m · · · e

Aiτ1−nm
hτ1−nm

(e
Aiτ1−nm−1

hτ1−nm−1 · · · eA2h1D1 + · · ·

+Diτ1−nm−1
)

+eAiτ1
hτ1 · · · e

Aiτ1−nm+m
hτ1−nm+mV1

+ · · ·+ eAiτ1
hτ1V1 +Diτ1

+ V1)

= dim(eAiτ1
hτ1 e

Aiτ1−m
hτ1−m · · · e

Aiτ1−nm
hτ1−nm

(e
Aiτ1−nm−1

hτ1−nm−1 · · · eA2h1D1 + · · ·

+Diτ1−nm−1
) + eAiτ1

(hτ1+···+hτ1−nm+m)V1

+ · · ·+ eAiτ1
hτ1V1 +Diτ1

+ V1) (13)

for almost all hj , τ1−mn+1 ≤ j ≤ τ1−1, (τ1− j)
mod m 6= 0. The relationships ij = ij+m, j =
1, 2, · · · have been used in the last equation.

From Lemma 1, we have

e
Aiτ1

(
∑

m−1

k=0
hτ1−km)V1 + · · ·+ eAiτ1

hτ1V1

= ΓAiτ1
V1 (14)

for almost all hj , j = τ1, τ1 − m, · · · , τ1 − mn.
Accordingly, we can rewrite (13) as

dim(eAiτ1
hτ1 · · · eA2h1D1 + · · ·+Diτ1

+ V1)

≥ dim(eAiτ1
hτ1 · · · e

Aiτ1−nm
hτ1−nm

(e
Aiτ1−nm−1

hτ1−nm−1 · · · eA2h1D1 + · · · (15)

+Diτ1−nm−1
) + ΓAiτ1

V1 +Diτ1
)

By applied Lemma 2 repeatedly, for almost all
hj , j = τ1, τ1 −m, · · · , τ1 −mn, we have

dim(eAiτ1
hτ1 · · · e

Aiτ1−nm
hτ1−nm

(e
Aiτ1−nm−1

hτ1−nm−1 · · · eA2h1D1

+ · · ·+Diτ1−nm−1
) + ΓAiτ1

V1 +Diτ1
)

≥ dim(e
Aiτ1−nm

hτ1−nm(e
Aiτ1−nm−1

hτ1−nm−1 · · ·

×eA2h1D1 + · · ·+Diτ1−nm−1
) + ΓAiτ1

V1 +Diτ1
)

= dim(e
Aiτ1−nm

hτ1−nme
Aiτ1−nm−1

hτ1−nm−1 · · ·

×eA2h1D1 + · · ·+ e
Aiτ1−nm

hτ1−nmDiτ1−nm−1

+Diτ1−nm
+ ΓAiτ1

V1) (16)

where the relationship Diτ1
= Diτ1−mn

has been
used.

Because each of (14) and (16) holds for almost all
hj , j = τ1, τ1 −m, · · · , τ1 −mn, almost all choice
of hj , j = τ1, τ1−m, · · · , τ1−mn satisfies (14) and
(16) simultaneously.

Continuing this process, we can prove that, for
almost all hj , j = τ1 −mn, · · · , τ1 −m2n + 1, we
have

dim(eAiτ1
hτ1 · · · eA2h1D1 + · · ·+Diτ1

+ V1)

≥ dim(e
Aiτ1−mn

hτ1−mn · · · eA2h1D1 + · · ·

+e
Aiτ1−mn

hτ1−mnDiτ1−mn−1

+Diτ1−mn
+ ΓAiτ1

V1)

...

≥ dim(eAiτ2
hτ2 · · · eA2h1D1 + · · ·+Diτ2

+ΓAiτ1
V1 + · · ·+ ΓAiτ1−m+1

V1)

= dim(eAiτ2
hτ2 · · · eA2h1D1 + · · ·+Diτ2

+ V2)

where τ2 = τ1 −m2n.

Proceed the above reasonings, we finally have

dim(eAil
hl · · · eA2h1D1 + · · ·+ eAil

hlDil−1
+Dil)

≥ dim(eAiτn
hτn · · · eA2h1D1 + · · ·+Diτn

+ V)

≥ dimV (17)



where τn = l −
∑n−1

k=0 m(mn)k.

Let l ≥
∑n−1

k=0 m(mn)k−1, then from (5) and (17)
it follows that

Rf = V (18)

which implies (9). ♦

By Theorem 1, the controllable set is subspace
V. We thus refer to V as controllable subspace of
system (1).

Theorem 2. For switched linear system (1), the
controllable set is

C = V (19)

The proof is completely parallel to that of Theo-
rem 1 and hence is omitted.

Corollary 3. For switched linear system (1), the
following statements are equivalent

(i) The system is completely controllable;
(ii) The system is completely reachable; and
(iii) V = <n.

Remark 1. For a non-switched linear system (A,B),
Corollary 3 degenerate to the well known geo-
metric characterization for controllable subspace
(Wonham, 1979)

C = B +AB + · · ·+An−1B

3.2 Switching control design

By Theorems 1 and 2, any states in subspace
V can transfer to each other in finite time. In
this subsection, we study the following switching
control design problem for switched system (1).

Switching Control Design Problem Given

any two states x0 and xf in the controllable

subspace V, find a switching path σ and control

input u to steer the system from x0 to xf in finite

time.

Combining the proof of Theorem 1 and the ge-
ometric approach of linear systems (Wonham,
1979), we can formulate a procedure to solve this
problem.

From the proof of Theorem 1, we can find a natu-
ral number l, positive real numbers h1, · · · , hl, and
an index sequence i0, · · · , il, such that equation
(18) holds. That is

eAil
hl · · · eA2h1D1 + · · ·+Dil = V (20)

Fix a positive real number h0. Define the switch-
ing time sequence as

t0 = 0, tk = tk−1 + hk−1, k = 1, · · · , l + 1 (21)

From the proof of Theorem 1.1 in Wonham (1979),
for any k ∈M and t > 0, we have

Dk = Im W k
t (22)

where

W k
t =

t
∫

0

eAk(t−τ)BkB
T
k eA

T
k (t−τ)dτ

Combining (20) with (22) leads to

eAil
hl · · · eA2h1ImW 1

h0
+ · · ·+ ImW il

hl
= V (23)

If we can formulate a control input u satisfying
the equation

xf = x(tl+1) = eAlhl · · · eA1h0x0

+eAlhl · · · eA2h1 ×

t1
∫

t0

eA1(t1−τ)B1u1(τ)dτ

+ · · ·+

tl+1
∫

tl

eAil
(tl+1−τ)Biluil(τ)dτ (24)

then the switching control problem will be solved.
To this end, consider the piecewise continuous
control strategy

uik(t) = BT
ik
e
AT
ik

(tk+1−t)
ak+1, tk ≤ t < tk+1

k = 0, 1, · · · , l (25)

where ak ∈ <n, k = 1, · · · , l + 1 are vector
variables to be determined.

Combining (24) with (25) gives

xf − eAlhl · · · eA1h0x0 = eAlhl · · · eA2h1

×

t1
∫

t0

eA1(t1−τ)B1B
T
1 eA

T
1 (t1−t)dτa1 + · · ·

+

tl+1
∫

tl

eAil
(tl+1−τ)BilB

T
il
e
AT
il

(tl+1−t)
dτal+1(26)

This is equivalent to

xf − eAlhl · · · eA1h0x0 =

[eAil
hl · · · eA2h1W 1

h0
, · · · ,W il

hl
]a (27)

where a = [aT1 , · · · , aTl+1]
T .

As xf − eAlhl · · · eA1h0x0 ∈ V, it follows from
(23) that linear equation (27) with unknown a

has at least has one solution. Solutions of linear
equations (27) can be computed by symbolic or
numerical softwares.



4. CONCLUSION

In this paper, detailed controllability and reach-
ability analysis has been carried out for switched
linear control systems. It has been proven that,
the controllable (reachable) set is exactly the min-
imal Ak- invariant subspace for k ∈ M which
contains

∑

k∈M Bk. The switching control design
problem has been also addressed and solved in
Wonham’s geometric approach. These results set
up an elementary and solid framework towards
a comprehensive geometric theory for switched
linear systems.
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