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Abstract: This paper investigates the controllability and reachability of switched
linear control systems. It is proven that both the controllable and reachable sets
are subspaces of the total space. Complete geometric characterizations for both
sets are presented. The switching control design problem is also addressed.
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1. INTRODUCTION

During the last decade, hybrid and switched
systems have attracted considerable attention
(Chase, Serrano & Ramadge, 1993; Branicky,
1998; Wicks, Peleties & DeCarlo, 1998; Ye, Michel
& Hou, 1998; Liberzon & Morse, 1999). Basi-
cally, a switched system consists of continuous-
time/discrete-time dynamical subsystems and a
rule (supervisor) that determines the switching
among them.

Switched systems deserve investigation for theo-
retical reasons as well as for practical reasons.
Switching among different system structures is
an essential feature of many engineering control
applications including power systems and power
electronics, and switched systems have numer-
ous applications in control of mechanical sys-
tems, air traffic control, aircrafts and satellites
and many other fields (Li, Wen & Soh, 2001).
Control techniques by switching among different
controllers have been applied extensively in recent
years. Indeed, a switched controller can provide a
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performance improvement over a fixed controller
(Morse, 1996; Narendra & Balakrishnan, 1997;
Savkin, Skafidas & Evans, 1999). The switched
controller architecture is proven to be a rigor-
ous design framework for general nonlinear sys-
tems (Kolmanovsky & McClamroch, 1996; Caines
& Wei, 1998; Leonessa, Haddad & Chellaboina,
2001). A switched controller can also achieve
certain control objects which cannot be accom-
plished by conventional methods, such as pure
feedback stabilization of nonholonomic systems
(Brockett, 1983).

A fundamental pre-requisite for the design of
feedback control systems is full knowledge about
the structural properties of the switched systems
under consideration. These properties are closely
related to the concepts of controllability, observ-
ability and stability which are of fundamental
importance in the literature of control. For con-
trollability and reachability, studies for low-order
switched linear systems have been presented in
Loparo, Aslanis & ITajek (1987) and Xu & Antsak-
lis (1999). Some sufficient conditions and neces-
sary conditions for controllability were presented
in Ezzine & Haddad (1989) for switched linear
control systems under the assumption that the
switching sequence is fixed a priori. The com-
plexity of stability and controllability of hybrid



systems was addressed in Blondel & Tsitsiklis
(1999).

For controllability analysis of switched linear con-
trol systems, a much more difficult situation arises
since both the control input and the switching rule
are design variables to be determined, and thus
the interaction between them must be fully under-
stood. For a switched linear discrete-time control
system, the controllable set is not a subspace but
a countable union of subspaces in general case
(Stanford & Conner, 1980; Ge, Sun & Lee, 2001).
For a switched linear continuous-time control sys-
tem, the controllable set is an uncountable union
of subspaces (Sun & Zheng, 2001).

In this paper, we investigate the controllability
and reachability issues for switched linear control
systems in detail. We prove that, both the con-
trollable set and the reachable set are subspaces of
the total space, and the two sets always coincide
with each other. Verifiable geometric characteri-
zation is presented for the controllable subspace.
The switching control design problem is also ad-
dressed.

2. ELEMENTARY RESULTS

Consider a switched linear control system given
by

Qf(t) = on(t) + Baua(t) (1)

where z € R" are the states, u : R € R, k =
1,---,m are piecewise continuous input functions,
o: Rt - M = {1,2,---,m} is the switching
path to be designed, and matrix pairs (Ag, By)
for k € M are referred to as the subsystems of
(1).

Given a switching path ¢ : [0,t;] — M, sup-
pose its discontinuous (jump) time instants are
ty < ty < -+ < tg, we refer to the sequence
to,t1,t2, - ,ts as switching time sequence, and
the sequence o(ty),o(t1), --,0(ts) as switching
index sequence. It is clear that these two sequences
can uniquely determine the switching path, and
vice-versa.

For clarity, let z(t; zo,u,0) denote the state tra-
jectory at time ¢ of switched system (1) starting
from x(0) = 2o with u(t) = [ui(t), -, um()]7.

A state x is said to be controllable, if it can
be transferred to the origin in a finite time by
appropriate choices of input u and switching path
.

Definition 1. State x € R" is controllable, if there
exist a time instant ¢ty > 0, a switching path
o :[0,ty] — M, and inputs wuy : [0,t7] — R"*,
k € M, such that z(ts;x,u,0) = 0.

Definition 2. The controllable set of system (1) is
the set of states which are controllable.

Definition 3. System (1) is said to be (com-
pletely) controllable, if its controllable set is ™.

The reachability counterparts can be defined in
the same fashion and are omitted here.

Denote B, =ImB;, and D), = Z?:iol Al By, for

k € M. Note that Dy is exactly the controllable
subspace of subsystem (A, Bg).

By an elementary analysis (Sun & Zheng, 2001;
Ge, Sun & Lee, 2001), the reachable set of system
(1) is given by

R = UpZq Uig,iveM Uny - hy>0(Diy, +
A; Aiy b A
€ kthik—1+"'+e khk"'e lhlpin) (2)

and the controllable set of system (1) is given by

[eS) —Ai h
C= Uk=1 Yig,-ireM Uho,“whk>0(e 0 ODio

oo e Aioho L gm A D, (3)

Given a matrix A and a subspace B € R", let
I'4B denote the minimal A-invariant subspace
that contains B, i.e.,

CuB=B+AB+---+ A" 'B
This operation can be defined recursively as

T, T4,B=T4,(T4,B). Let us define the nested
subspaces for system (1) as

Vi=Dy+ -+ Dy

Vj+1:FA1Vj+”'+FAmVja ]:1727(4)

and

k=1

Note that if dimV; =dimV;ii, then V; = V;
for I > j. This fact implies that V = V,,. It
is readily seen that this subspace is the minimal
subspace which is invariant under A, k € M and
contains ), ., Bi. See Ge et al. (2001) for the
computational issues of this subspace.

Note that eA*ImB C T'4,ImB for all A € R"*",
B € R™"*P and ¢ € R. This implies that

RCV, CCV (5)

In the sequel, we exploit several properties of
exponential matrix functions which play an im-
portant role in structural analysis for switched
linear systems.

Lemma 1. For any given matrix A € R™*" and
subspace B C R", the following equation holds
for almost all t1,%5,-+,t, € R



eMByer2B ... e B=T4B (6)

Proof. Let S be the smallest subspace of R™ that
contains the subspaces eAB for all t € R. Let B be
a matrix such that B =ImB. By Proposition 2.1 of
Drager et al. (1989), S is exactly the controllable
subspace of matrix pair (4, B) :

S =span{eMBz:tc R,z e R"} =T4B (7)

0 .
Suppose et Bz;, j=1,---,n spans subspace S,
ie.,

0 0
S = span{e Bz, -+, e Bz, }

This implies that

1rank[eAt(1)B7 - ,eAt?LB] = dim(T"'4B)

Denote integer r = dim(T 4B), and matrix func-
tion L(ty,---,t,) = [eA1B,--- eA* B]. Choose
a nonsingular sub-matrix My with maximal rank
in L(#9,---,t%). Therefore, My is nonsingular and
rankMy =rankL(t{,---,t%). Denote the corre-
sponding sub-matrix of L(t1,---,t,) as M (t1,- - -,
t,), and its determinant as d(t1,- -, t,).

Since each entry in matrix M (t1,---,t,) is an an-
alytic function of variables tq,- -, t,, d(t1, -, tp)
is also an analytic function of its variables. As
dt9,---,t%) # 0, function d(ty,---,t,) is not
identically zero. By Weierstrass Preparation The-
orem (Kaplan, 1966, Theorem 62), its zeros forms
a zero-measure set of R™. Therefore, for almost
all t1,- -+, tn, matrix M(t1,---,t,) is nonsingular.
This implies that

rank[e B, .- et B] > dim(T' 4 B)

for almost all tq,---,t,. Together with the fact
that e**B C I'4B, we can conclude that

eMB4 - et B=T 48
stn

for almost all tq, - - -
Lemma 2. For any given matrices A € R™*™ and
By € R"*Pr k= 1,2, inequality

rank[AleA2tB1, BQ] Z rank[AlBl, B2] (8)
holds for almost all t € R.

Proof. Denote Q(t) = [Aje2'By, By]. Choose a
nonsingular sub-matrix G with maximal rank in
0(0) = [A1Bi1, Ba]. Denote the corresponding
sub-matrix of Q(t) as A(t), and its determinant
as d(t). It is standard that all elements of A(t)
are linear combinations of the form t*e*, hence
0 : B — R is an analytic function on R. Because
5(0) =detG # 0, the zeros of §(t) are isolated

points (Kaplan, 1966, Theorem 43). Consequently,
d(t) # 0 for almost all ¢ € R. Accordingly, for
almost all ¢, A(t) is nonsingular. Therefore,

rankQ(t) > rankA(t) = rankG = rank[A4; By, Bo)

for almost all ¢.

3. MAIN RESULTS
3.1 Geometric criteria

In this subsection, we shall identify the control-
lable set and the reachable set for switched linear
systems.

Theorem 1. For switched linear system (1), the
reachable set is

R=V 9)

Proof. We are to design a switching path o such
that each point in V can be reached from the
origin via this switching path.

Let tg,---,t; and ig = o(tg), -+, 0(t;) denote the
switching time/index sequences, respectively. As-
sume that the switching index sequence is peri-
odic. i.e.,

i0:17 7:1:27 Ty im—1:m7
im:177;m+1:27"';i2m71:m?'“ (10)
The switching time sequence tg,---,%; and the

number [ are to be designed later.

Let t¢y > t;. Let Ry denote the set of states which
are reachable at ¢y from the origin at to = 0. It
can be computed that

Rf — eAizhl A eAilhIDio + eAizhl - eAiQ thil
+-- @Ailthizf1 + Diz (11)
where h; = t;41 —t;, 7 = 0,1,---,1 — 1 and
hy =ty —1.
Since
eAilhl e €A2h1D1 + -+ eAithDi171 + Dil =

eAil (eAizth*l . 6A2h1D1 +-+D;,_,)+ D,

it follows from Lemma 2 that

dim(eAilhl o eA2h1D1 4+ 4 €Ailh1Di1,_1 + D”)
> dim(eAn-ht1 . gAhip, 1.
_;'_eAizflhl*lDilfQ + Dil,l + Diz) (12)
for almost all h;.

By repeatedly applying Lemma 2, for almost all
h’la ) hl—m-‘rla we have



dim(eAil hooeAhip 44 eAilh’D¢l71 +D;,)
Zdim(eAiﬁ hey L A2 Di+ -+ )

+D +Di71+1+"'+Dil)

Try—1

iy
= dim(edin . eA2mD 44 D, + V1)
where 71 =1 — m.
It follows from Lemma 2 that
dim(eAifl hey oL eAhip, 4.4 D;,, + Vi)
= dim(eA"Tl hry gAiny 1R (e““n—zhfl—2 .
xeA2MDy ...y etin2tnep,

+Di, )+ et D+ D+ V1)
> dim(e?in ' (eAq'ﬁ*Zh’l‘2 St
tetm—2tnep, 4D )
+etn D 4+ D + V1)
= djm(eAin hey (eAfrl—2h71—2 cef2hip) 4
+6A”1*2h”727)i71,3 +Di,, , +Di. )
+Di,1 + V1)
for almost all A, 1.

Proceed by the same reasonings, we have

hfl...eAth’D1+...+D +]}1)

irg hry (eAi-rl—mh"l*m . €A2h1D1

dim(e®in
A

iry
> dim(e
Ai o hri—m

+"'+6 1 ! Dirlfm—l

++Di,, )+ Di, + V1)
— dim(eAi.,.l h‘rl eAiTl_thl—m

A
(eMiri-m—1 cefthipy 4

+DiT1—m—1) + eAirl hory Vl + ’DZ,T1 + Vl)

+D

iry

hrj—m-1

for almost all hj,j =7 —1,---, 71 —m+ 1.

Continuing the above process gives

dim(eAiTl hey oL eA2h1’D1 +.---+D
A mhri—m A

.e iry—nm

+ V1)

th —nm

iry
(-

> dim(e?in e

hry—nm—1

..eAzhl'l)l + e

(eAirlfnmfl

+D

iﬂ'lfnmfl )

_|_eAirl hey L eAiTl —nm+m hri—nm+tm Vl

+otetm Y 4D+ V)
hry A hoyem A

; ; by,
‘rle try—m ..e try—mm “T1T MM

= dim(eA”l
(eAirlfnm—l h'rlf?nnfl ..
+D
ot etintny 4D

. €A2h1'D1 _|_ . e

) + eAi,.l (hry +---+h1—17nm+m)vl

Ty —nm—1

i, + V1) (13)
for almost all hj, 71 —mn+1<j <7 —1,(11—j)
mod m # 0. The relationships i; = %j4m,] =
1,2,--- have been used in the last equation.

From Lemma 1, we have

eAifl (23:701 h"'l_km)vl + oo+ eAi"'l hry Vl
=Ts W (14)

i
for almost all hj,j = 7,71 — m,---, 71 — mn.
Accordingly, we can rewrite (13) as

dim(etin/m . e®MDy 4o+ Dy V)

iy
> dim(eA'iTl hey oo eAi"'I*""L hry —nm
coefhip 4l (15)

+D1717Hm71) + FAi-rl Vi + Di-rl)

(eAiTlfnmfl hr)—nm-—1

By applied Lemma 2 repeatedly, for almost all
hjvj =T1,T1 —m, -+, T1 —mn, we have

dim(eAiTl th . eAiTl —nm th —nm

(eAiﬂ'lfn'mflth_nm_l cefelip,

R Dirl—nmrfl) + FAiq Vi + Difl)

e iTl—nm—lhTI*"mfl .

Z dim(eAiTlinm' hflfnm( A

XeA2h1D1 4+ 4+ Di7177Lm71) + FAirl V] + Di"l)
A

ir]—nm hry—nm eAirl —nmotRr—nm—1

= dim(e

Ai h
X€A2h1D1 4+ elirionm

+D

T —nm Yy,
Dl'rl —nm—1

+ T4, V1) (16)

iry —nm

where the relationship D; = D has been

used.

try—mn

Because each of (14) and (16) holds for almost all
hj,j =71, 71 —m,---, 71 —mn, almost all choice
of hj,j=m,m—m,---, 71 —mn satisfies (14) and
(16) simultaneously.

Continuing this process, we can prove that, for
almost all hj,j =7 —mn,---, 7 — m2n + 1, we
have

dim(etm ety 4 4Dy V)

cefthipy 4

—

> dim(e”ir-mn
+eAi71 L))

iry—mn—1
+D +Ta, V1)

> dim(eAiTz hey L. 6A2h1D1 4.4+ D
D4, Vit Ta V)
h72"'€A2h1'D1—|—-.-+D

irgy
—m
A

iy

= dim(e iry +V2)

where 7 = 11 — m?n.

Proceed the above reasonings, we finally have

dim(eA'ilhl “e. €A2h1D1 + R + eAilthil_l + Dil)
Z dil’l’l(eAiT” hry .. €A2h1D1 4+t Difn + V)
> dimV (17)



where 7, =1 — Z;é m(mn)*.

Let I > Y2720 m(mn)* —1, then from (5) and (17)
it follows that

Rp=V (18)

which implies (9). ¢

By Theorem 1, the controllable set is subspace
V. We thus refer to V as controllable subspace of
system (1).

Theorem 2. For switched linear system (1), the
controllable set is

C=V (19)

The proof is completely parallel to that of Theo-
rem 1 and hence is omitted.

Corollary 3. For switched linear system (1), the
following statements are equivalent

(i) The system is completely controllable;
(ii) The system is completely reachable; and

(iif) V =R,

Remark 1. For a non-switched linear system (A, B),

Corollary 3 degenerate to the well known geo-
metric characterization for controllable subspace
(Wonham, 1979)

C=B+AB+---+ A" 'B

3.2 Switching control design

By Theorems 1 and 2, any states in subspace
V can transfer to each other in finite time. In
this subsection, we study the following switching
control design problem for switched system (1).

Switching Control Design Problem Given
any two states xo and xy in the controllable
subspace V, find a switching path o and control
input u to steer the system from xo to x¢ in finite
time.

Combining the proof of Theorem 1 and the ge-
ometric approach of linear systems (Wonham,
1979), we can formulate a procedure to solve this
problem.

From the proof of Theorem 1, we can find a natu-
ral number [, positive real numbers hq, - - -, h;, and
an index sequence %g,---,1;, such that equation
(18) holds. That is

el e 4Dy =Y (20)

Fix a positive real number hg. Define the switch-
ing time sequence as

to=0,tp =tp—1 +hr—1,k=1,---,1+1 (21)

From the proof of Theorem 1.1 in Wonham (1979),
for any kK € M and t > 0, we have

Dy, = Im W/ (22)
where

t
Wtk _ /GAk(tiT)BkBgeAg(tiT)dT
0
Combining (20) with (22) leads to

eduli e M ImWL 4 ImW =V (23)

If we can formulate a control input w satisfying
the equation

wp=a(tipr) = et eMhog,
t1
el .. A2l o /eAl(tl*T)Blul(T)dT
to
tiy1
/ et =mI B w, (T)dr  (24)

ty

then the switching control problem will be solved.
To this end, consider the piecewise continuous
control strategy

T AT (tpe1—t
wi (1) = BE Aoy ot <t <ty

k=011 (25)

where a, € R*, £k = 1,---,1 + 1 are vector
variables to be determined.

Combining (24) with (25) gives

— eAlhl, e eAlh(le = eAlhl e eAth

Ly
t1

« /eAl(tl_T)BlB,ireA’{(tl_t)dTal 4
to
ti41

4 / e (tl+1_T)BilBg;eAz(t‘“_t)dTaH_l(26)
t

This is equivalent to

oy — eAih L gAtho g

[ttt Wtla(27)

T]T

where a = [a] -+, af},

As xy — eAihi .. edihogy € V) it follows from
(23) that linear equation (27) with unknown a
has at least has one solution. Solutions of linear
equations (27) can be computed by symbolic or
numerical softwares.



4. CONCLUSION

In this paper, detailed controllability and reach-
ability analysis has been carried out for switched
linear control systems. It has been proven that,
the controllable (reachable) set is exactly the min-
imal Ag- invariant subspace for k& € M which
contains  , -, Bx. The switching control design
problem has been also addressed and solved in
Wonham’s geometric approach. These results set
up an elementary and solid framework towards
a comprehensive geometric theory for switched
linear systems.
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