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Abstract: The aim of this work was to design and test robust H∞ feedback control
systems for the control of the upright posture of paraplegic persons standing. While
the subject stands in a special apparatus, stabilising torque at the ankle joint is
generated by electrical stimulation of the paralyzed calf muscle of both legs using
surface electrodes. This allows the subject to stand without the need to hold on
to external supports for stability: we call this “unsupported standing”. Sensors
in the apparatus allow measurement of ankle moments and the inclination angle.
A nested loop structure for control of standing is implemented where an inner
loop provides control of the total ankle moment while the controller in the outer
loop regulates the inclination angle. A difficulty in using electrically-stimulated
muscles as actuators in this setup is the very significant degree of nonlinearity in
the muscle response. We therefore focus here on robust H∞-control design for the
angle control loop. The design approach is verified in experiments with a paraplegic
subject.

Keywords: Functional Electrical Simulation, H∞ control, Biomedical systems,
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1. INTRODUCTION

Spinal cord injury results in the interruption of
the neurological pathway from the brain to the
muscles. For people who have a spinal cord in-
jury at mid to low thoracic level (in the back)
the resulting dysfunction includes standing and
stepping. After spinal cord injury muscles gener-
ally maintain their ability to contract. This of-
fers the possibility of electrical stimulation of the
muscles in order to recover useful functionality
of the paralysed limbs. This stimulation of mus-
cle (or better: motor nerves) is known as Func-
tional Electrical Stimulation (FES) (Kralj and
Bajd, 1989). We have been developing control
systems for unsupported standing, using a special
apparatus (see figure 1), know as the Wobbler
(Hunt et al., 1998b; Hunt et al., 1997). While
standing in the apparatus the subject wears a
body brace which locks the knee and hip joints.
Thus we can regard the body in its simplest form
as a single link inverted pendulum with move-

Fig. 1. Subject standing in the apparatus.

ment only around the ankle joints. The ankle is
controlled by stimulation of the calf muscles. A
major design problem in this setup is the signifi-
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cant nonlinearity in artificially-stimulated muscle
(Gollee and Hunt, 1997; Hunt et al., 1998a), and
this causes significant limitations in the achievable
closed-loop performance.

Our work on unsupported standing has used a
nested-loop control structure (see figure 2) (Hunt
et al., 1997). In this setup an inner controller
regulates the total ankle moment, while the outer
loop controller regulates the angle of inclination.
In previous work (Hunt et al., 2001) a polynomial
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Fig. 2. Nested loop control structure. θ is the
inclination angle, m is the muscle moment
and p the pulsewidth of the stimulation. C �
is the moment controller and C � is the angle
controller.

pole placement approach has been used for con-
troller design for both angle and ankle moment
control. These controllers have been tested with
paraplegic subjects. The controllers gave satis-
factory performance, with several periods of suc-
cessful unsupported standing. However, the pole
assignment approach does not allow uncertainty
in the plant to be dealt with in a direct way during
the design process. In this paper we investigate
the design of a robust H∞ controller for the angle
control loop. The weighting functions in the de-
sign are developed by taking direct account of the
uncertainty in the inner loop, which arises princi-
pally due to nonlinearity in the stimulated muscle.
The design approach is tested in experiments with
one paraplegic subject.

The paper is structured as follows: section 2 de-
scribes the overall control system and the moti-
vation to apply an H∞ design approach. In sec-
tions 3 and 4 the H∞-controller design for un-
supported subject is summarised. Experimental
results are given in section 5 and conclusions in
section 6.

2. METHODOLOGY

The nested loop structure for unsupported stand-
ing (see figure 3) allows the overall feedback con-
trol system to be designed and tested in several
steps, starting with the ankle moment control loop
and moving then to the body angle controller.
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Fig. 3. Nested loop structure for unsupported
standing

2.1 Apparatus

The Wobbler apparatus is described in detail in
(Donaldson et al., 1997). The Wobbler has been
designed to allow investigation of artificial con-
trol strategies for unsupported standing without
interference from the brain. To this end, a custom-
fitted body shell is worn which locks the knee
and hip joints; the subject is therefore free to
rotate only around the ankle joint. The feet are
positioned in footboxes. A load cell between the
two boxes allows measurement of total ankle mo-
ment. A string attached to the body brace at
shoulder level is wound round a pulley attached
to a potentiometer placed well behind the subject.
This potentiometer is used to measure the inclina-
tion angle. Four light ropes are attached from the
shoulders of the body brace to a frame attached to
the ceiling in order to prevent the subject falling
backwards or forwards too far. For angle control
experiments the ropes are slackened sufficiently to
allow movement back and forth within predefined
limits.

For stimulation of the muscles we use the “Stan-
more Stimulator” as described in (Phillips et al.,
1993), connected to electrodes which are placed
on the skin over the calf muscles. The stimulator
provides current controlled monophasic rectangu-
lar pulses up to a pulse duration of 800µs. In these
experiments the stimulator operates at a constant
frequency of 20Hz (sample interval 50ms). At the
start of each experiment the current is set at a de-
sired constant level . Thus, during the experiments
the stimulation pulses have constant frequency
and amplitude, and the pulsewidth is varied.

2.2 Subjects

All experiments reported here were carried out
with a 44 year old male subject who has a com-
plete spinal cord lesion at level T7/8 and is 4
years post-injury. Muscle training involved alter-
nate stimulation of the ankle plantarflexor and
dorsiflexor muscles for initially 30 minutes per
day, which increased to 1 hour per day. The
subject’s muscles had been trained for 6 months
prior to the experimental sessions reported here.
The plantarflexors are stimulated by pairs of self-
adhesive electrodes (75 mm diameter) which are
placed over the midline of soleus.

2.3 Identification Test

This is an open-loop test using a stimulation sig-
nal where the pulsewidth has a PRBS (Pseudo-
Random Binary Sequence) form. The same stim-
ulation pulsewidth is applied to both legs and the
total moment (left + right moments) is measured.
The PRBS signal can be applied around a range
of mean stimulation pulsewidth levels. The ampli-
tude of the PRBS signal at each mean level was set
at 35µs. The PRBS signal was set up at a period of
155 samples, i.e 5 samples per digit (Ljung, 1999).
The input/output data arising from the PRBS
tests are used to identify (Hunt et al., 1998a) local
linear transfer functions at each operating point.
One of the models is chosen as the nominal model
for moment control design.



2.4 Design Procedure

The steps involved in control design are:

(1) The closed loop controller for ankle moment
is designed; this step establishes a desired
closed-loop response between reference mo-
ment mref and measured moment m. This
controller is designed using a polynomial pole
placement approach and has been verified
by testing real time performance (Hunt et
al., 2001). The nominal model for this design
is chosen as one member of the family of
identified models.

(2) The closed loop controller for body inclina-
tion angle is designed. The plant for angle
controller design is taken as the transfer func-
tion between the desired moment mref and
the angle θ, i.e. this is a combination of the
ankle moment closed loop and the open loop
body dynamics. Angle controller design takes
account of the uncertainty in the muscle dy-
namics, as described below.

2.5 Standing Test

Following angle controller design two types of
standing test are carried out.

(1) Disturbance rejection: Here, the reference
angle is kept constant and disturbances are
applied to the body. We applied disturbances
by repeatedly pulling the subject forwards or
pushing him back.

(2) Angle Tracking : Typically, a square-wave
reference angle of a given amplitude and
frequency is applied.

3. H∞ CONTROLLER DESIGN

The H∞ approach requires a description for both
the nominal system and the uncertainties associ-
ated with the model. The formulation of the H∞

based control problem is outlined here.

3.1 Performance and Stability Specification

The controller K(s), which stabilises the nominal
plant G(s), is required to ensure stability and
meet performance specifications for all possible
plants defined by an uncertainty. These concepts
are explained for a closed-loop unsupported stand-
ing setup whose block diagram is shown in figure
4. In the diagram D(s) denotes the nominal inner
closed loop (moment control), K(s) is the feed-
back controller to be determined and θ(s), θref (s),
δ(s), and η(s) denote the output, reference, distur-
bance and measurement noise, respectively. Note
that G(s) is composed of the open loop body
dynamics and the closed moment control loop
D(s) (Cm and Muscle, see Figure 3) . K(0) is the
static gain controller which ensures a steady state
gain of 1 between θref (s) and θ(s). Wg(s) Wd(s),
Wy(s), Wr(s) and Wn(s) are weighting functions
which must be chosen by the designer.
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Fig. 4. Generalized and weighted performance
block diagram

Now we will look at a typical performance spec-
ification, namely tracking reference signals, and
see how to quantify it in terms of a weighted
H∞-norm bound. The closed loop performance
requirements of the feedback system can be ex-
pressed in terms of gain to reduce the influence
of disturbances and measurement noises on the
output signal. The sensitivity function and the
complementary sensitivity function are measured
as |S(jω)| and |T (jω)|, and should be as small
as possible over the frequency band of the dis-
turbances and measurement noises, respectively.
These control objectives can be written using
frequency dependent bounds on the sensitivity
functions, and norms. Bounds are approximated
by gains of transfer function Wd(s), Wy(s) and
Wn(s). The sensitivity function performance is
represented as :

‖WySWd‖
∞

≤ 1 (1)

Also, performance of the complementary sensitiv-
ity function becomes

‖WyTWn‖
∞

≤ 1 (2)

After the performance problem, we consider the
robust stability problem in a weighted norm
bound. Suppose the nominal transfer function is

G and the plant is perturbed to G̃ = (1+∆Wr)G.
Here Wr is a fixed real rational weighting function
and ∆ is a variable real rational transfer function
having the following properties:

1. G and G̃ have the same number of unstable
poles,

2. ‖∆‖
∞

≤ 1 (stable), then

|(G̃(jω) − G(jω))/G(jω)| ≤ |Wr (jω)| ∀ω (3)

So |Wr (jω)| provides the uncertainty profile. The
system is robustly stable, for all ∆, with |∆| ≤ 1
(∀ω), if :

‖WrT‖
∞

≤ 1 (4)

Combining these notions acquired previously, we
will state that the design specifications are sat-
isfied when the following conditions are satisfied:
nominal performance (1)(2) and robust stability
(4).Consequently, the final cost function in the
H∞ design is to minimise

∥∥∥∥∥

WySWd

WyTWn

WrT

∥∥∥∥∥
∞

(5)



3.2 Standard H∞ optimisation

Selection of the weighting functions is the most
important part of the design process. There are
no systematic procedures available for the selec-
tion of the weighting functions, other than some
guidelines provided in (Skogestad and Postleth-
waite, 1997) and (Lundstrom et al., 1991). The
following steps are necessary for formulating and
solving the weighted mixed sensitivity problem:

(1) The scheme in figure 4 is transformed into the
standard H∞ formulation control problem
(Zhou, 1998). It consists of a modified plant
G(s), which includes the weighting functions
and a controller K(s) which is to be obtained
by H∞.

(2) Choosing the weighting functions based on
the knowledge of the plant and design con-
straints (stability and performance require-
ments).

(3) Solving the H∞ optimisation problem and
obtaining the controller. More precisely, from
the above representation, the H∞ control
problem can be stated as follows; “Find an
internally stabilising and feasible controller
K(s) for a given plant P (s) such that the H∞

norm of the linear fractional transformation
matrix FL (P (s) , K (s) ) is below a given
level γ”, i.e. ‖M‖∞ < γ ;with γ ∈�

and γ > 0. The numerical solution of
the H∞ control is solved with MATLAB
software which was developed in (Chiang and
Safanov, 1988).

(4) There may be situations where a solution
may not exist for the H∞ problem formu-
lated with a particular choice of weighting
functions; under such circumstances the de-
sign constraints need to be redefined and the
above procedures have to be repeated.

(5) The final stage is testing the performance of
the designed controller with the real plant
and if the performance of the plant with the
controller is not satisfactory, adjustments of
the weighting functions has to be carried out
(i.e in particular if ‖M‖∞ < 1 and ‖∆‖

∞
≤

1, then by the small gain theorem (Zhou,
1998) the perturbed system is robustly stable
for all ∆).

4. H∞ CONTROLLER DESIGN CHOICES
FOR UNSUPPORTED STANDING

The equation of motion of the body dynamics
(free only to move about the ankle, and main-
tained upright by a variable moment m about the

ankle) is: −m + ρgl sin θ = J d2θ
dt2

. In this equation
ρ is the mass and J is the moment of inertia. The
centre of gravity is assumed to be at a distance
l from the ankle joint and g is the gravitational
acceleration. For small inclination angles we have
sin θ ≈ θ and the linearised transfer function of
the body dynamics becomes :

θ(s)

m(s)
=

−1/J

s2 − ρgl
(6)

The biomechanical parameters ρ, l and J can
be measured for each subject using a simple
procedure outlined in (Hunt et al., 1998a). The

plant considered for angle controller design is
composed of the open loop body dynamics and
the closed loop muscle moment system.

4.1 Plant perturbation

Three open-loop models of the muscle dynamics
are identified at three operating points. One of
these was chosen as a nominal model and a mo-
ment controller designed using pole assignment,
as noted above. This controller together with the
family of three open-loop muscle models yields
three possible moment loop dynamics; multiply-
ing the open loop body dynamics with the three
moment loop transfer functions gives three further
transfer functions, and these serve as the possible
plants for angle loop design. Thus, the overall
system (inverted pendulum with inner loop) is
defined by a multiple model representation or
family of models. An uncertainty bound will be
developed by using the information contained in
the models, which is used to carry out robust
control design. In order to specify the bound we
need to define the uncertainty set by using the
family of models. To do that, we have to choose
two things:

(1) A nominal plant G.
(2) A multiplicative uncertainty weighting func-

tion, Wr.

Given these, the precise definition of the multi-
plicative uncertainty set is

U (G, Wr) :=

������ G̃ (jω) − G (jω)

G (jω)

������ |Wr (jω)| , ∀ω �
(7)

Choice of the Nominal Model: We select
one of the local models as a nominal model. For
a larger stability margin we select one of the
higher gain models. The nominal model, for an-
gle controller design, then consists of the nom-
inal body dynamics together with the nominal
inner loop (closed loop). Table 1 shows the three
plant models available for angle control design,
together with static gains. These transfer func-
tions were obtained in the following procedure: (i)
three open-loop models of the muscle dynamics
(p → m) were identified as described above (i.e
identification test 2.3); (ii) one of these (Plant 2)
was chosen as a nominal model and a moment
controller designed using pole assignment - this
controller together with the family of three open-
loop muscle models yields three possible moment
loop dynamics; (iii) the subject’s parameters are
included in the equation of the body dynamics (6);
(iv) multiplying the body dynamics with the three
moment loop transfer functions gives the three
transfer functions in the table, and these serve
as the possible plants for angle loop design. Note
that the results reported here are for a subject
with physical parameters J = 90Nms2, ρ = 90kg
and l = 1m.

The proportional plant perturbation is given by

|∆(jω)| = |(G̃(jω) − G(jω))/G(jω)|. Figure 5
shows plots of the ∆ perturbation for various
models. The uncertainty bound Wr is chosen as
follows :

Wr (jω) = 0.04
3 + jω

1 + j0.143ω
(8)



Plant Transfer function DC-gain

1 −0.06694s3
−7.677s2

−285.4s−3471

s6+95.65s5+3347s4+5.187×104s3+2.97×105s2
−4.013×105s−2.462×106 0.00141

2 −0.05542s3
−6.388s2

−238.6s−2913

s6+95.9s5+3316s4+4.837×104s3+2.368×105s2
−3.747×105s−2×106 0.00145

3 −0.04769s3
−5.563s2

−209.7s−2582

s6+99.24s5+3563s4+5.314×104s3+2.337×105s2
−4.112×105s−1.991×106 0.00129

Table 1. Multiple Model Representation
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Fig. 5. Plant Perturbation

The numerical values in this transfer function
have been chosen such that at each frequency
|Wr(jω)| represents the maximum potential per-
centage difference between all of the plants repre-
sented by U(G, Wr) and the nominal plant model
G. In that sense, U(G, Wr) represents a ball of
possible plants, centered at G. On a Nyquist plot,
a disk of radius |Wr(jω)G(jω)|, centered at G(jω)

is the set of possible values that G̃(jω) can take
on, due to the uncertainty description.

4.2 Selection of weighting functions

The closed loop performance objectives are for-
mulated as weighted closed-loop transfer functions
which are to be made small through feedback.

Choice of Wg

This post-compensator improves the performance
at low frequencies. Therefore Wg is selected by
adding integral action in order to achieve low
frequency disturbance rejection. We also add a
phase-advance term to make the response faster:

Wg (s) =
0.9s + 4

s
(9)

Choice of Wd

A disturbance model has been evaluated by in-
vestigating the inverted pendulum system, and by
consideration of the disturbance forces acting to
perturb the body. We choose Wd to give a stable
approximation of the disturbances as:

Wd (s) =
1

s + 2.64
(10)

Choice of Wy

Wy will be chosen as a constant, for two reasons:
first, to keep the order of the augmented system
as low possible, and second to achieve the require-
ment described previously (equations (1) and (2)),
thus

Wr(s) = 0.5 (11)

Choice of Wn

The Wn weight represents frequency domain mod-
els of sensor noise. Each sensor measurement feed-
back to the controller has some noise, which is
often higher in one frequency range than another.
The Wn weight is derived from laboratory experi-
ments. This weighting function has been evaluated
approximately as

Wn (s) =
0.3s + 5

s + 80
(12)

In this scheme a scale Sc = 1000 has been added
because the plant has a low gain and this modifi-
cation improves conditioning of the H∞ controller
computation. With this choice of weighting func-
tions, the controller design procedure gives the
S (sensitivity transfer function from disturbance
term δ to output θ ) and T (complementary sen-
sitivity transfer function from measurement noise
η to output θ ) functions shown in figure 6.
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Fig. 6. Sensitivity function S(jω) and complemen-
tary sensitivity function T (jω)

5. EXPERIMENTAL RESULTS

The controller design is based on the nominal
plant and set of perturbations defined earlier.
The following optimal design parameter was found
to achieve the best robust stability performance:
γ = 1.2, where γ represents the minimal value
of the ∞-norm. Results of the closed loop angle
tracking and disturbance rejection tests are shown
in figures 7 and 8.

(1) Tracking test: a square wave with a period
of 20s (see figure 7) is used as the reference.
For the tracking no external disturbance are
explicitly applied.

(2) Disturbance test : a constant reference signal
is applied (see figure 8), however the standing
is disturbed by pulling the subject forward
(at t = 9s and t = 20s) and by pushing him
backwards (t = 15s and t = 25s).

In all of these plots the upper graph shows the
stimulation pulsewidth p, the middle graph shows



reference moment mref and measured moment m,
and the lower graph shows reference angle θref

and measured angle θ. In both cases the controller
gives us results satisfying tracking and distur-
bance rejection, and so achieves robust stability
against model uncertainties. Fast response and
zero steady state error are achieved.
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Fig. 8. Test D : Disturbance rejection. The subject
is pulled forward at 9s and 20s, and is pushed
backwards at 15s and 25s.

6. CONCLUSION

In this paper we have successfully applied robust
H∞ control theory to the control of the upright
posture of paraplegic persons standing. Experi-
mental results of reference tracking and distur-
bance rejection demonstrated good performance
and closed loop stability over the whole range
of plant operation. The weighted sensitivity ap-
proach was found to give a convenient and trans-
parent way to design for performance. Moreover,
the perturbation/weight plots, together with the

minimal value of the ∞-norm, give a useful mea-
sure of the robustness properties of a given design.
The resulting minimal ∞-norm value gives a clear
way to characterise the controller, and to address
the performance and bandwidth trade-offs.
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