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Abstract: Frequency-domain conditions are derived for characterizing parameters of
output dynamic controllers providing absolute stability and a relavant performance for
various classes uncertain systems, such as nonlinear Lur’e systems, systems switched
by an unknown law, linear systems with time-varying norm banded parameters and

some others.
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1. INTRODUCTION

The problem o designing output feedback con-
trollers for nonlinear dynamic plants, whose math-
ematical models contain nknown subsystems,
functions or parameters, is under study in t he
present paper. This branch of control theory has
being developed actively within the framework of
H-optimal control (see, for example, (Doyle et
al., 1989; Khargonekar et al., 1990; Savkin a nd
Petersen, 1994; Battilotti, 2001) and r eferences
therein). In these papers, a class of control laws
was derived, parameters of which are determined
in terms of solutions to two Riccati nonlinear ma-
trix equations of a minimax type, these solutions
satisfying some additional constraint. Since up to
the present, there aren’t any necessary and suffi-
cient conditions for the existence of such solutions,
the problem of realization for these controllers is
closely c onnected with a uws of an gppropriate
software (for example, MATLAB).

1 This work was supported in part by the Russian Foun-
dation for Basic Research under Grant 9901-00037 and by
the programme ”Universities of Russia” under Grant No.
2468.

In the given paper, we present frequency-domain
conditions allowing one to establish if the closed-
loop s ystem with a given o utput feedback c on-
troller, chosen using a nominal model of the plant,
will be absolutely stable for uncertainty from s ome
class and if it satisfies a relevant robust perfor-
mance requirement, without finding t he above-
mentioned solutions to the Riccati equations. This
situation is very similar to that of absolute stabil-
ity theory, where finding an appropriate Lyapunov
function is replaced by testing frequency-domain
conditions.

The technique applied in this paper is taken over
from the previous papers of the authors. It has
been established in the papers ofKogan (1998b,
2001) that in the minimax-based robust control
designs for various classes of uncertain s ystems
(Lur’e systems with sector bounded nonlinearity,
linear systems with t ime-varing erm bounded
parameters and o therg, there is no necessity in
solving nonlinear matrix e quations or inequali-
ties. Instead, there was indicated an a lternative
way for characterizing parameters of linear state
feedbacks through testing their generalized return
differences. This testing was shown to be reduced



to checking availability of a real positive odd-
multiple root for several polynomials, which is
easy to do. On the other hand, in the papers
(Brusin, 1996, 2000) a new class of output dy-
namic controllers with parameters expressed in
terms of Riccati inequalities has been derived for
nonlinear Lur’e systems whose uncertainties sat-
isfy integral quadratic inequalities of some general
type. A joint of these approaches allows to derive
the frequency-domain conditions for characteriz-
ing output feedback controllers, providing various
classes uncertain systems with a relevant perfor-
mance. Note that the technique suggested can be
generalized to some classes of infinite-dimensional
systems.

2. PROBLEM STATEMENT AND
PRELIMINARIES

The class of uncertain systems under considera-
tion is described by the equations

$:A$+Blf+BQ’U, s

o 1)

Y z,

where z € R" is a state, u € R is a control input,

y € R* is a measured, ¢ € R¢ is a dusturbance

or/and an uncertainty input. The problem is to

synthesize output feedback controllers of the form

di R .

E:f(xay)a u:g(x), (2)

where Z is a controller state, providing fulfillment

of the relevant purposes in one of the following
three cases:

S;. € is an external disturbance, and the purpose
here is in attenuating the disturbance according
to a criterion

T
[Faugd<ceo.:0),
0

YT > 1Ty > 0;

Sa. £ is an internal disturbance corresponding to
a system uncertainty of the form

() = pe(a(),ul)) , (4)

where ¢; is an unknown causal operator belonging
to the class K given by the integral constraint

T
/ N(z(t), u(t), &¢) dt > 0VT > To.  (5)
0

The purpose here is to provide the absolute stabil-
ity of the closed-loop system around zero in the

class K, i.e. the following conditions have to be
satisfied for all admissible uncertainties:

Sg. £ is a disturbance of the mixed kind, i.e.

§= COl(fewafin) , Br= (BfwaBin) ) (7)

where &, (t) is the external disturbance, and &;,
is the internal disturbance defined in the similar
way as in (4), i.e.

where the operator ¢; belongs to the class K given
by the relation of the form (5). The purpose here
consists in satisfying the following two conditions:

Gq: for &,(t) = 0, the closed-loop system is
absolute stable in the class K, i.e. the conditions
(6) hold;

Ga: for &, (t) Z 0, the external disturbances are
to be attenuated according to the criterion

T

sup [ Fo(o, 1,6 dt < C@(0),3(0)), (g

thKO
YT >1T .

In the above relations (3), (5) and (9), the inte-
grands are of indefinite sign quadratic forms of a
general form

.’IJTMH.’IJ —+ 2$TM12U + 2$TM13£
+ul Masu + 2u” Mas¢ — €7 Mss¢,  (10)
ME=M;>0, i=1,2.3,

and C(z(0),£(0)) are constants converting to zero
at z(0) = £(0) = 0.

The subsequent synthesis of the controllers guar-
anteeing for the closed-loop system (1), (2) the
fulfillment of the purposes (3), (6) or (9) with
functions F(z,u,&), N(z,u,£) or Fo(z,u,&) of
the form (10) is based on the well-known Riccati
matrix equation:

PA+ ATP + My, — O M50,

(11)
+207 MosTl, 4+ TIT Ma,II, =0,

where



0. = (M + M23M3_31M27;)_1
[PBy + Miz + (PBy + Mis)Mz;' M%),
I, = (Ms3 — M3 My, Mas)™!
[PB; + My3 — (PBy + M) My, Mos) T

(12)

The main property of this equation used below
consists in the fact that, for any solution to the
system (1), the following relation holds:

d r

—z' Pz + F(z,u,

dt (z,u,8) (13)
= @7 Moot + 207 Mas€ — €7 Masé |

where

§=€—-&,
&L =1z .

%h=1u— Uy , (14)
Uy = —0,z2 ,

The equation (13) is a well-known Hamilton-
Jacobi equation for an appropriate minimax prob-
lem, V(z) = 27 Pz being a Bellman function.

Below, instead of the equation (11), we will apply
the corresponding Riccati inequality

PA+ ATP + My, — 0T M50,

(15)
+207 MysI1, + II] M3311, <0,
therefore, the inequality obtained from (13) after
replacing = by < will hold. The matrix P is known
to be a stabilizing solution to this inequality, if

matrix A, = A + B{II, — B30, is Hurwitz.

3. SOME CONTROL PROBLEMS LEADING
TO THE ABOVE SCHEME

We will show here that many well-known control
problems such as designs of absolutely stabilizing
and robust controllers for various classes of un-
certain systems are in the framework of the above
problem statement.

3.1 Absolute stabilizability

For the nonlinear Lur’e system

&= Az + Bi£ + Bsu

y=1Lz, (16)
(G 0
z= ( 0 )m+(D0)u,
where £ = ¢ (y,t) is an unknown continuous

function of y u ¢, ¢ (0,t) = 0, each component
of which satisfies the sector constraint

i i (Vi t i .
r < M <, i=1,2,...,1,a7)

2

an absolute stabilization problem consists in de-
signing an output feedback controller so that the
closed-loop system would be absolutely stable in
the class K in the sense of the conditions (6).

From (17) immediately follows that the nonlinear-
ities at hand satisfy

(—H_y)'T(Hiy—£>0,

where
H_ = diag (h),...,n®)
Hy = diag (n),....n0)
I =diag (71,...,7) >0,

which corresponds to relation (5) for

N(z,8) = (¢ — H_La)"T(H, Lz — €) . (18)

3.2 A switched system

Suppose that the disturbance input in the system
(16) is defined as £ = C(¢)z, where the variable
matrix C' takes one of two possible values, C,
or Cy. A switching law of the matrix values is
assumed to be arbitrary, but is such that only
a finite number of switching may occur during
a finite time interval (see (Liberson and Morse,
1999) for details). The robust control problem for
this system is to synthesize a controller under
which the conditions (6) hold for any admissible
switching law.

As it can immediately be checked, the nonlinear-
ities of such a kind satisfy the condition (5) with

N(z,€) = (£ - C12)" (D1& + af)
+(€ = Coz)" Doz + bE) (19)
—(52|(Cl - CQ).’L'|2 Z 0 s
.D1 = (Ol2 —G,)CQ —(1201, D2 = (62 —b)Cl —6202,

4?2 = min(a?, 8%), a,f,a,b are any scalars such
that a + b < 0.

3.3 Robust H,-control
Let an uncertain system be descibed by the equa-
tion
E=[A+F1Q () E1]z+[B+F>Q; (t) EqJu
+[G+F3Q3 (t) Es]lw, z(0) =0 ,
y=Lz, (20)

= (D)ot ()



where ;(t),i = 1,2,3 are unknown matrices
satisfying the inequalities

O @) <I, i=1,23, Vi, (21)
and A, B, G, F;, E;, i =1,2,3 are given matrices
of compatible orders. The problem is in construct-
ing a robust output feedback H, controller.

Rewriting the equation (20) in the form
& = Az + Bu + Gl + (F1, F2, F3)in

few:wa

in = col( (t)Erz , Qo (t) Eau , Qs(t) Esw)

and observing that from (21) it follows that the
condition (5) holds, where

N(z,u,&)= |E'1-'L'|2"'lE2u|2"'|E3£e:c|2 - |£in|2a

one can see the control purpose will be attained if
the inequality (9) holds with

FO(-'L'a u, few) =$TCOTCO$+UTDED0U—’Y2|EW|2-

4. SYNTHESIS ON THE BASIS OF MATRIX
RELATIONS

Consider a clags of linear dynamic controllers
defined by the equations
di

— = A+ Bié + Bou + Z(Lz — y)

dt (22)

~

u=-0,z, =1Lz,

where O,,II, are given in (12), and Z is any
matrix of an appropriate order. The following
result is in order.

Theorem 1. Let F(z,u,£) be of the form (10)
with the matrix coefficients M;;, P > 0 be a
solution to the appropriate inequality (15), in
which ©, and II, are given in (12), and the
matrix Z be such that Ay = A+ B{II, + ZL
is Hurwitz. Suppose that the following frequency-
domain condition holds for some € > 0:

Bliw) = Ku(—iw)! My K, (i w) (23)
+2Re K, (=i w)T Mys — M3z < —el ,Vw,
where K.(p) = Ou(pl — Az)™'B; and i = v/-1.

Then, for all solutions of the closed-loop system
(1), (22), the following statement is true:

T
[P0, + ald)de < C@(0),30),
0

O<e<e, VT>0,

where € = £—1I1,z, and C(z(0), 2(0)) is a constant
depending on the initial conditions of the both
plant and controller, C(0,0) = 0.

As it is apparent from (24), Theorem 1 gives
a solution to the problem at hand in the case
S1. The proof of this theorem is based upon the
below lemma. Before formulating it, let us denote
# = z — % and derive, from the equations (1),
(22), in view of (14), the following equations for

the closed-loop variables:
di -
— —AzZ+ B
ar z% + B1&

=0.7.

(25)

[~

Here, £~ u 14 can be considered as an input and
an output, respectively, for a stable (by virtue of
the theorem assumption) system with % being the
state and K, (p) the transfer function.

Lemma 1. Let Az be Hurwitz and the frequency-
domain condition (23) be held. Then, for any
T > 0, there exists such €; > 0 that
T
I(T)= / (8" M+ 20" Miaf — €M) dit
0 (26)

T
<-e [ |§?dt+ CL(&(0),
/

where C1(0) = 0, holds for solutions of the system

1), (22).

For the case Sa, where the nonlinear system is
obtained from (1) by introducing an additional
feedback from z and u to £, the following state-
ment is in order.

Theorem 2. Suppose that all the assumptions of
the Theorem 1 hold for the function F(x,u,&) =
N(z,u,&) + p*|u|?, where p is a scalar, and, ad-
ditionally, let P be a stabilizing solution to the
corresponding Riccati inequality. Then the closed-
loop system (1), (4), (22) will be absolutely stable
for all uncertainties belonging to the class K de-
fined by the condition (5).

Finally, in the case S3, when both external and
internal disturbances are available, we have the
following result.

Theorem 3. Suppose that for the system (1), (7)
and the function

where £ = col(&.z, &) and Fo(z,u,0) > 0, all the
assumptions of the Theorem 1 holds and P is a



stabilizing solution to the corresponding Riccati
inequality. Then, all the processes of the closed-
loop system (1), (7), (22) satisfy the purpose
conditions G, and Gs.

5. SYNTHESIS ON THE BASIS OF
FREQUENCY-DOMAIN CONDITIONS

According to the above-mentioned, for robust con-
troller designs it is required to determine a sta-
bilizing solution P > 0, if any, of the Riccati
inequality (15), to put it into the formula (12)
for calculating ©, and II, and, finally, to form
the controller (22), choosing for it a matrix Z so
that Az = A + BIl, + ZL would be Huirwitz
and the frequency-domain condition (23) would
be held. In what follows, we will show that solving
the Riccati inequality and the matrix P itself
might be excluded from the above procedure.
Instead, using an ideology of inverse variation
problems and, in particular, the inverse problem
for differential games (Kogan, 1998a) as well as
the Kalman-Yakubovich-Popov lemma (Gelig et
al, 1978), we will derive frequency-domain condi-
tions, expressed in the terms of © and II immedi-
ately, for a controller of the form
di

— = A+ Bié + Bou + Z(Lz — y)

dt (27)

~

u=-0z, ¢(=II

8>

to be desired. It is worth noticing that these
conditions will cover all the parameters 0, and
I1.. which could be computed by the formulas (12),
(15).

For the sake of simplicity, let Moz = 0in (10), and
then the matrices ©. and II, given in (11) will be
of the form

(28)

and the Riccati inequality (15) takes the form

PA+ ATP+ My

(29)
—O0T M350, + 1T Ms,Il, < 0.
If Msg # 0, then after the change of variables
E=n+ M3_31M27;u one may easy to pass to a new
equation and a new quadratic form with a zero
required block.

With reference to the purpose stated, at first note
that the equations (22) define a whole class of
robust controllers with the matrices @, and IL,
being computed according to the formulas (28),
where P > 0 is some solution of the inequality
(29). This suggests an idea to consider an inverse,

in some sense, approach to the synthesis, consist-
ing in assigning the parameters © and II for a
controller of the form (27) and in checking some
test for their suitability. As it will be seen in the
sequel, this approach does not need in finding any
solution of the inequality (29), establishing, at the
same time, the fact of its solvability. (This makes
it related to the approach of absolute stability
theory.)

The rigorous formulating of the present inverse
approach leads us to the following problem: given
the matrices © and II such that Ag = A —
BsO and A, = A — Bs© + B{Il are Hurwitz,
find necessary and sufficient conditions for the
existence of a matrix P = PT > 0, satisfying both
the equations

M (PBy + M2)T =0,

L r (30)
Mg (PBy + My3)' =11
and the inequality
PA+ATP + My — 0T M0
(31)

+I7 M3sIl < 0.

The next lemma gives a solution to the above
problem in the terms of the following transfer
function matrix of the system (1) from the inputs
¢ = col(u, &) to the outputs § = col(y1,y2), where
y1 = u+ Oz and yy = £ — Iz:

W(p)" = Wu()" ,We)") ,
Wu(p) = (1,0) + ©H(p) ,
We(p) = (0,1) —11H(p) ,
H(p) = (pI — A)~' (B, B1) .

) =
32
o (32

Note that for the disturbance-free system (B; =
0), the transfer matrix W, (p) passes to the return
difference matrix for the control law v = —0Oz,
and for the uncontrolled system (B; = 0), the
transfer matrix W (p) moves to the return differ-
ence matrix for the disturbance law £ = Ilzx.

Lemma 2. Suppose that all the eigenvalues of A
do not lie on the imaginary axis and the pair
(A, B) is controllable,where B = (B, Bs). Let ©
u II be chosen in such a way that, first, Ag = A—
Bs0© and A, = A + B{Il — B,© are Huzwitz,
second, the following inequality is satisfied for a
function F'(z,u,&) of the form (10) with Ma3 = 0:

My — Mya Mt ML+
_ T _
+(0 — M3 ML) Msy (0 — My, M{,) (33)
+T07 M33Tl = CECont >0,

and, third, the pair (Ae,Cemn) is observable.
Then, there exists P = PT > 0 satisfying both



the equations (30) and the inequality (31) if and
only if the following frequency-domain condition
holds V w € (—o00, 00) and V complex (:

cwiia (g ) W

2 F[H(@w) (],

where W (p) is given in (32), x denotes the com-
plex cojugate transpose, and F(z,(), where { =
col(u, £), is of the form (according to (10))

F(.’L’, g) =z*Muz +2Rez* (M12 M13)C (35)
+€*diag(M22, —M33)C .

Combining the results of Theorems 1,2,3 with
those of Lemma 2, we come to our main con-
tribution of this paper, stated separately in the
following theorems for each of the cases Sq1, Sz, S3.

Theorem 4. Suppose that all the eigenvalues of
A do not lie on the imaginary axis and the pair
(A, B) is controllable,where B = (B», B;). Let O,
II and Z be chosen in such a way that:

(1) A@ =A- BQ@, Ac =A + Blﬂ - BQ@ and
Az = A+ B{Il + ZL are Hurwitz.

(2) Given F(x,u,£) of the form (10) with Ms3 =
0, the condition (33) holds.

(3) (Ae, Con) is observable.

(4) For W(p) given in (32), the frequency-
domain condition (34) holds.

(5) For Kz(p) = ©(pl — A7)~ By, the following
frequency-domain condition holds:

Kz(—i CU)TMQQKZ (l CU)
+2Re K 7(— w)T Mys — M3z < —I V.

(36)

Then the controller (27) provides the fulfillment
of the purpose (24) for the system (1).

Theorem 5. Let all the assumptions of Theo-
rem 4 be satisfied with respect to F(z,u,£) =
N(z,u,&) + p?|ul>. Then the closed-loop system
(1), (4), (27) is absolutely stable in the class K
defined by the condition (5).

Theorem 6. Let all the assumptions of Theo-
rem 4 be satisfied for the system (1), (7) and
F(z,u,) = Fo(z,u,8:) + N(z,u,8) + p2|u|2,
where Fy(z,u,0) > 0. Then, the purpose condi-
tions G and Gg hold for all the processes in the
closed-loop system (1), (7), (22).

By applying the above results to the control
problems listed in the section 3, frequency-domain
conditions for parameters @, II and Z of the
appropriate output feedback controllers (27)are
derived immediately.

6. CONCLUSION

A robust control design problem for some classes
uncertain systems such as nonlinear Lur’e sys-
tems, systems switched by an unknown law, linear
systems with time-varying norm bounded param-
eters has been considered in some general frame-
work. It has been shown that robust output feed-
back controllers for such systems can be charac-
terized immediately in terms of frequency-domain
conditions, avoiding thus the necessity of solving
matrix equations or inequalities.
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